Obsolete IDL
Features

IDL Version 6.0

July, 2003 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

Research Systems Inc.

0703IDL600BS

Restricted Rights Notice

The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. Research Sys-
tems, Inc., reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of the soft-
ware, merchantability, or fithess for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered
by the Licensee or any others resulting from use of the IDL or ION software packages or their doc-
umentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, Research Systems, Inc. grants you alimited, nontransfer-
able license to reproduce this particular document provided such copies are for your use only and
are not sold or distributed to third parties. All such copies must contain the title page and this
notice page in their entirety.

Acknowledgments

IDL® isaregistered trademark and ION™, ION Script™, |ON Java™, are trademarks of Research Systems Inc., registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Librar

Copyright ® 1999

National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by INTERSOLYV, Inc., 1991-1998.

Use of this software for providing LZW capability for any purpose is not authorized unless user first entersinto alicense agreement
with Unisys under U.S. Patent No. 4,558,302 and foreign counterparts. For information concerning licensing, please contact: Unisys
Corporation, Welch Licensing Department - C1SW19, Township Line & Union Meeting Roads, PO. Box 500, Blue Bell, PA 19424.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.
Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1:

OVEBIVIBW ettt e e et e e et e e e e et e e et e e e eat e e e et e esananaeeeras 9
Backwards ComPatibilityccccceeiieiieiicsiecse e ree e st sreesre e 10
IDL INtErNal ROULINESc.vieivieiecteete ettt sttt ettt e b e sbe e sbeesbeesbeenbeesreenns 10
ROULINES WITEEN TN IDL ...ttt ettt ettt et et as 10
Detecting Use of ODSOIELE FEAIUIESccceceieeeieiie ettt nas 11
Documentation for Older Obsolete ROULINESocoveeiieecieecee e 12

Chapter 2:

ODSOlEte ROULINES .ooeiiiiiiiice e e e 13
(]Il 01U | 1] [14
[0 I) 01 1= | R 15
D] = I 0 L 16
DEMO _IMODE ... ettt ettt ettt e e e ae e e re e e sre e e neeennes 17
(L@ o o S 1 i S 18
L (O 20
L Il 1 = 21

Obsolete IDL Features 3

GET_SYMBOL ..ttt sttt be e nne s 23
HANDLE _CREATE ...ttt sttt st st sneneensns 24
HANDLE _FREE ...ttt st 27
HANDLE _INFO ..ottt sttt sttt sse st e e e sneneensens 28
HANDLE _MOVE ..ottt sttt 30
HANDLE VALUE ..ottt sttt sne e 32
HDF_DFSD_ADDDATA ..ottt st sttt sttt se e 34
HDF_DFSD _DIMGET ..ottt sttt sneseensns 36
HDF_DFSD _DIMSET ..ottt st 37
HDF_DFSD _ENDSLICEooiiieeeeee sttt sse st sne e nsns 39
HDF_DFSD_GETDATA ettt sttt 40
HDF_DFSD_GETINFOooiiiieieeeee sttt st sse et ssessenes e ssessensens 41
HDF_DFSD_GETSLICE ...ttt st 43
HDF_DFSD _PUTSLICEootiiieieeee ettt sttt st ss e sne e s 45
HDF_DFSD_READREF ..ottt st st 46
HDF_DFSD_SETINFO ..ottt te e e s sse e sessessenessessessensens 47
HDF_DFSD_STARTSLICE ..ottt 51
HDF_VD_GETNEXT oottt sttt e st e nesnensensns 53
INP, INPW, OQUTP, OQUTPW ..ottt s 54
[Y oo 55
LIVE_CONTOUR ..ottt sttt sttt sttt sttt ne e 56
LIVE_CONTROL ...ooiiiiiieieiesiesiesee et ste e e e e sestesseseenessessessensesessessessensesessessensens 65
LIVE_DESTROY ..ottt sttt st sttt s sttt be st 68
LIVE_EXPORT .ottt sttt st ste et e s stesseaeneasessesseneesessesseseenensensens 70
LIVE_IMAGE ...ttt sttt sttt b et b e e 73
LIVE_INFO oottt sttt st ae st e e e e sessens e e e e aneseesens 80
LIVE_LINE ottt st 92
[Y I A 5 SO 96
LIVE_OPLOT ottt sttt sttt sttt s b ettt sb ettt be e 97
LIVE _PLOT ettt st se et e enensesaenaeneenenneneenen 103
LIVE_PRINT ettt sttt sttt eb e e 111
LIVE _RECT oottt sttt st st sae e ese s ae st eseeneesessenseneeneesenennen 113
LIVE_STYLE ottt ettt sb e e 117
LIVE_SURFACEoci ettt s stesae e ssesaestese s e ssessenaeneesessessnnes 124
LIVE _TEXT ottt sttt eb e e 133
0 SR 137

Contents Obsolete IDL Features

PICKFILE ettt 138
POLY FITW ettt ettt sttt st e bbbt 139
REWIND ...ttt ettt 141
RIEMANN <.ttt sttt ettt ee b n e 142
RSTRPOS ...ttt ettt b et b bt b ettt 147
SET_SYMBOL ...ttt bbbt sttt s bt ne e 149
SETLOG .ottt b bbbt 150
SIZE EXECULIVE COMMANGoviieiieiiriesieeeiesie et sne e sneneneas 152
SKIPE ettt h R bbbt n et 154
SLICER ...ttt b et £ bbbt et b et e e b s 155
STRUSEP ettt bbbt 161
TAPRD ..ttt b £ e bRt E bbbt e bbb e bt 163
TAPWRT ettt b et b bbb bt eenenas 164
TIFF_DUMP <ttt sttt en bt 165
TIFF_READ ..ttt 166
TIFF_WRITE ...ttt bbbttt b et en bt 168
TRINLOG ...ttt b ettt b et 170
VAX FLOAT ettt ettt sttt bbbttt 172
WWEOR ...ttt bbbt b bttt 174
WWIDED ..ottt ettt ettt e b bttt b e 175
WIDGET_MESSAGE ..ottt 176
Chapter 3:

Routines with Obsolete Keywords ... 177
BYTEORDER ..ottt sttt s sb e bbb et neeanas 179
CALL_EXTERNAL ..ottt bbb 180
DEVICE oottt ettt s b e b e st b e b b et et et e aenanas 181
DOC_LIBRARY ettt et 182
EXTRACT _SLICE ..ottt ettt b ettt e ne s 183
IDLGIMPEG:ISAVE ..ottt 184
IDLGrVOIUMEINIT et 185
LINKIMAGE ..ottt ettt 186
LIVE _PRINT ettt sttt et sb e st e s be e sbe s s be e e sneeeneeens 187
MAKE_DLL ettt 188
ONLINE_HELP ettt st b et nre e 189
OPEN ..ttt bbb e bbb £ R bR bbbt e et 190

Obsolete IDL Features Contents

PRINT/PRINTF ettt sttt sttt 196
LN B N I8 1 o S 197
READ/READF ...ttt sttt bbbt eb e e 198
AN 5 O S 199
SAVE e E et b e et b ettt be e e 200
SPAWN ..ttt sttt ettt e e be st e e e ne R ae et et e e renaenens 201
WIDGET _BASE ...ttt ettt st 203
WRITE _TIFF <ottt sttt ene st s e e s nsenneneas 204
WRITEU .ottt sttt ettt sttt b et b et nb e b e 205
Chapter 4:
Obsolete GraphiCs DEVICESoooviiiiiiiiiiiiiiiiiee et 207
TRELIDEVICE .oeeieeeeiee ettt ettt sttt s e e e st sneeneestesteeneenseneenrennnas 208
LIDIIVEr SEFENGINSveeiecece ettt e 209
S AV g T 0Tl 7 o) 1 209
(IS o T 7= 1 o TS 210
The MaCiNtOSN DEVICEccveeeeiecieee ettt esaesrenneas 211
Chapter 5:
Remote Procedure CallSccccuiiiiiiiiiiiiiiiiieeee e 213
USING IDL @S 8N RPC SEIVEN ...o.eiiieieieeeieeesie ettt see e e enes 215
The IDL RPC DITECLONY ...vcvviivieeeeiesie sttt sttt ste ettt st sbe e naesresne s 215
RUNNING IDL iN SEIVEr MOEc.veeieesee et 215
Creating the IDL RPC Librarycoooeeoecieie st sve e 215
Linking your CHEnt Programcccoceieeeeoenese e ereees e ee et se e see e e eeeeen 216
The IDL RPC LIBIaryooceeiee ettt sttt st 217
Free idl Variable ... e 218
o1 Ao LIz = o) [= S 219
Lo IS = VL= S 1 1= = o1 Y 221
LIRS 87/ S 222
=0 TS g o | o L= o U 223
SEN Tdl_COMMEBNG ..o e e st aesaesreeneas 224
LSO Lo | 100 S 225
SEt Al VariaDle .o e 226
S S O 0O VL= 00 S 1 USRS 228
UNFEZIStEr Tl _CHIENT oot ene 229

Contents Obsolete IDL Features

The varinfo_t SITUCIUIEco.oiviieeee ettt s 230

Variable Creation FUNCLIONSccco i 230
AV 7= T o) (S 231
AV 7= ST ol 1] L= 232
AV 7= G0 (o0 1 0o = S 233
AV 107> (ST (o0 | o SR 234
AV 7= ST o S 235
AV 0= 2T T | RSSO 236
AV 107 ST 0] o TS 237
AV 07= ST 11 o ST 238
A L= Y/ 239
More Variable Manipulation MECIOSccceeoereieeieieeseeeeseesee e ee e seeeeesee e 240
Notes on Variable Creation and Memory Managementccceeeveeeecieveseseeciesiennens 242

FreBiNg RESOUITESocueeeeieitieieeee sttt ee sttt e et ae e e et et sneeneeeeseeenas 242

Creating a Statically-Allocated ATTayccceeeiieeeiese e 242

Allocating SPace fOr SENQS ..oveeeieieeeeese e 243
RPC EXAMPIES ...oovecieeiete sttt sttt ettt sttt st s e s e stesbesne et e sresreennensestenreas 244

Obsolete IDL Features Contents

Chapter 1:
Overview

This chapter discusses the following topics:

Backwards Compatibility 10 Documentation for Older Obsolete Routines . 12
Detecting Use of Obsolete Features 11

Obsolete IDL Features 9

10 Chapter 1: Overview

Backwards Compatibility

RSI strongly recommends that you not use obsol ete routines when writing new DL

code. As DL continuesto evolve, the likelihood that obsol ete routines will no longer
function as expected increases. While we will continue to make every effort to ensure
that obsol ete routines shipped with IDL function, in asmall number of casesthis may

not be possible.

IDL Internal Routines

Routines that are built into the IDL executable—routines not written in the IDL
language—will either continue to be included in the executable until the scheduled
removal release or will be re-implemented in the IDL language. In the latter case,
obsol ete routines may run slower than the original version. Note that obsolete
routines that have been re-implemented in the IDL language may also be scheduled
for eventual removal.

Routines Written in IDL

Routines written in the IDL language (. pr o files) are contained in the obsolete
subdirectory of the lib directory of the IDL distribution. Aslong as a given obsolete
routineisincluded in this subdirectory, it will continue to function as aways.

Backwards Compatibility Obsolete IDL Features

Chapter 1: Overview 11

Detecting Use of Obsolete Features

You can search for usage of obsolete routines, system variables, and syntax by setting
the fields of the 'WARN system variable. Setting 'WARN causes IDL to print
informationa messages to the command log or console window when it encounters
referencesto obsolete features. See“!'WARN” in the IDL Reference Guide manual for
details.

Obsolete IDL Features Detecting Use of Obsolete Features

12 Chapter 1: Overview

Documentation for Older Obsolete Routines

Routines that became obsoletein IDL version 4.0 or earlier are not documented in
this book or in the IDL Online Help. However, if the routine iswritten in the IDL
language, you can inspect the documentation header of the. pr o file, or usethe
DOC_LIBRARY routine. The. pr o filesfor obsolete routines are located in the
obsol et e subdirectory of thel i b directory of the IDL distribution.

Documentation for Older Obsolete Routines Obsolete IDL Features

Obsolete Routines

This chapter contains complete documentation for obsoleted IDL routines. New IDL
code should not use these routines. For alist of the routines that replace each of these

obsolete routines, see Appendix |, “ Obsolete Features’ in the IDL Reference Guide
manual.

Obsolete IDL Features 13

14 Obsolete Routines

DDE Routines

These routines are obsolete and should not be used in new IDL code.

Windows-Only Routines for Dynamic Data Exchange
(DDE)

IDL for Windows supports DDE client capability for cold DDE links. The relevant
system calls are documented below:

Result = DDE_GETSERVERS()

This function returns an array of service names for the currently-available DDE
servers.

Result = DDE_GETTOPICS(server)

This function returns the topics list for the specified server. The server argument isa
scalar string containing the name of the desired DDE server.

Result = DDE_GETITEMS(server)

This function returns the items list for the specified server. The server argument isa
scalar string containing the name of the desired DDE server.

Result = DDE_REQUEST((server, topic, item)

This function returns the requested data in string format. The server, topic, and item
arguments must be scalar strings.

DDE_EXECUTE, server, topic, command

This procedure causes the DDE server to execute the command for the specified
topic. The server, topic, and command arguments must be scalar strings.

DDE Routines Obsolete IDL Features

Obsolete Routines 15

DELETE_SYMBOL

The DELETE_SYMBOL procedure deletesa DCL (Digital Command Language)
interpreter symbol for the current process.

Note
This procedure is available on VMS only.

Syntax
DELETE_SYMBOL, Name [, TYPE={1]|2}]
Arguments

Name

A scalar string containing the name of the symbol to be deleted.
Keywords
TYPE

Indicates the table from which Name will be deleted. Set TY PE to 1 to specify the
local symbol table. Set TY PE to 2 to specify the global symbol table. The defaultisto
search the local table.

Obsolete IDL Features DELETE_SYMBOL

16 Obsolete Routines

DELLOG

The DELLOG procedure deletesaVMS logical name.

Note
This procedure is available on VMS only.

Syntax
DELLOG, Lognam [, TABLE=string]
Arguments

Lognam

A scalar string containing the name of the logical to be deleted.
Keywords
TABLE

A scalar string giving the name of the logical table from which to delete Lognam. If
TABLE is not specified, LNM$PROCESS_TABLE is used.

DELLOG Obsolete IDL Features

Obsolete Routines 17

DEMO_MODE

This routine is obsolete and should not be used in new IDL code.

The DEMO_MODE function returns True if IDL is running in the timed demo mode
(i.e., alicense manager is not running). Calling this function causesa FLUSH, -1
command to be issued.

Syntax

Result = DEMO_MODE()

Obsolete IDL Features DEMO_MODE

18 Obsolete Routines

DO _APPLE SCRIPT

This routine is obsolete and should not be used in new IDL code.

The DO_APPLE_SCRIPT procedure compiles and executes an AppleScript script,
possibly returning aresult. DO_APPLE_SCRIPT isonly availablein IDL for Macintosh.

Syntax
DO_APPLE_SCRIPT, Script [, /AG_STRING] [, RESULT=variable]
Arguments
Script
A string or array of stringsto be compiled and executed by AppleScript.
Keywords
AS_STRING
Set this keyword to cause the result to be returned as a decompiled string.

Decompiled strings have the same format as the “ The Result” window of Apple's
Script Editor.

RESULT

Set this keyword equal to a named variable that will contain the results of the script.

Example

Suppose you wish to retrieve arange of cell datafrom aMicrosoft Excel spreadshest.
The following AppleScript script and command retrieve the first through fifth rows
of thefirst two columns of a spreadsheet titled “Worksheet 17, storing the result in the

IDL variable A:
script = ['tell application "Mcrosoft Excel"', $
'get Value of Range "RICl: R5C2" of Worksheet 1', $
"end tell"']

DO APPLE_SCRI PT, script, RESULT = a

Similarly, the following lines would copy the contents of the IDL variable A to a
range within the spreadsheet:

DO_APPLE_SCRIPT Obsolete IDL Features

Obsolete Routines 19

A=1[1, 2, 3, 4, 5]

script = ["tell application "IDL" to copy variable "A"", $
"into avariable' , $
"tell application "Excel" to copy avVariable to', $
"val ue of range "R1Cl: R5C1" of worksheet 1']

DO _APPLE_SCRI PT, scri pt

Obsolete IDL Features DO_APPLE_SCRIPT

20 Obsolete Routines

ERRORF

This routine is obsolete and should not be used in new IDL code.

The ERRORF function returns the value of the error function:
X

—_t?
erf(x) = 2/ﬁje dit
0

Theresult is double-precision if the argument is double-precision. If the argument is
floating-point, the result is floating-point. The result always has the same structure as
X. The ERRORF function does not work with complex arguments.

Syntax
Result = ERRORF(X)
Arguments
X

The expression for which the error function is to be evaluated.
Example

To find the error function of 0.4 and print the result, enter:
PRI NT, ERRORF(O0. 4)

IDL prints:
0. 428392

ERRORF Obsolete IDL Features

Obsolete Routines 21

GETHELP

This routine is obsolete and should not be used in new IDL code.

The GETHELP function returns information on variables defined at the program
level from which GETHELP s called. The function builds astring array that contains
information that follows the format used by the IDL HEL P command.

When called without an argument, GETHELP returns a string array that normally
contains variable datathat isin the same format as used by the IDL HEL P procedure.
The variablesin thislist are those defined for the routine (or program level) that
called GETHELP. If there are no variables defined, or the specified variable does not
exist, GETHELP returns a null string. Other information can be obtained by setting
keywords.

Syntax
Result = GETHELP([Variable])
Arguments

Variable

A scalar string that contains the name of the variable from which to get information.
If thisargument is omitted, GETHEL P returns an array of strings where each element
contains information on a separate variable, one element for each defined variable.

Keywords

FULLSTRING

Normally astring that is longer than 45 charsis truncated and followed by “...” just
like the HEL P command. Setting this keyword will cause the full string to be
returned.

FUNCTIONS

Setting this keyword will cause the function to return all current IDL compiled
functions.

Obsolete IDL Features GETHELP

22

Obsolete Routines

ONELINE

If avariable name is greater than 15 charactersit is usually returned as 2 two
elements of the output array (Variable namein 1st element, variableinfo in the 2nd
element). Setting this keyword will put all the information in one string, separating
the name and data with a space.

PROCEDURES

Setting this keyword will cause the function to return all current IDL compiled
procedures.

SYS_PROCS

Setting this keyword will cause the function to return the names of al IDL system
(built-in) procedures.

SYS_FUNCS

Setting this keyword will cause the function to return the names of al IDL system
(built-in) functions.

Note
RESTRICTIONS: Due to the difficultiesin determining if avariableis of type
associate, the following conditions will result in the variable being listed as a
structure. These conditions are:

e Associate record typeis structure.
« Associated fileis opened for update (openu).
e Associatefileis not empty.

Another difference between this routine and the IDL help command isthat if a
variable isin acommon block, the common block nameis not listed next to the
variable name. Currently thereis no method available to get the common block
names used in aroutine.

Example

GETHELP

To obtain alisting in ahelp format of the variables contained in the current routine
you would make the following call:

HelpData = GetHelp()
The variable HelpData would be a string array containing the requested information.

Obsolete IDL Features

Obsolete Routines 23

GET_SYMBOL

This routine is obsolete and should not be used in new IDL code.

The GET_SYMBOL function returns the value of aVMS DCL (Digital Command
Language) interpreter symbol as a scalar string. If the symbol is undefined, the null
string is returned.

Note
This procedure is available on VMS only.

Syntax

Result = GET_SYMBOL (Name [, TYPE={1|2}])
Arguments

Name
A scalar string containing the name of the symboal to be translated.

Keywords

TYPE

The table from which Name is translated. Set TY PE to 1 to specify the local symbol
table. A value of 2 specifiesthe global symbol table. The default isto search thelocal

table.

Obsolete IDL Features GET_SYMBOL

24 Obsolete Routines

HANDLE_CREATE

This routine is obsolete and should not be used in new IDL code.

The HANDLE CREATE function creates anew handle. A “handle” isa
dynamically-allocated variable that isidentified by aunique integer value known asa
“handle ID”. Handles can have avalue, of any IDL data type and organization,
associated with them. This function returns the handle 1D of the newly-created
handle.

Because handles are dynamic, they can be used to create complex data structures.
They are also global in scope, but do not suffer from the limitations of COMMON
blocks. That is, handles are available to all program units at all times. (Remember,
however, that IDL variables containing handle I Ds are not global in scope and must
be declared in a COMMON block if you want to share them between program units.)

Handle Terminology
The following terms are used to describe handles in the documentation for this
function and other handle-related routines:
¢ HandleID: The unique integer identifier associated with a handle.
e Handlevaue: Dataof any IDL type and organization associated with a handle.

e Top-level handle: A handle at the top of a handle hierarchy. A top-level handle
can have children, but does not have a parent.

e Parents, children, and siblings: These terms describe the relationship between
handles in ahandle hierarchy. When anew handle is created, it can be the start
of anew handle hierarchy (atop-level handl€) or it can belong to the level of a
handle hierarchy below an existing handle. A handle created in thisway is said
to be achild of the specified parent. Parents can have any number of children.
All handles that share the same parent are said to be siblings.

Syntax

Result = HANDLE_CREATE([ID])

HANDLE_CREATE Obsolete IDL Features

Obsolete Routines 25

Arguments

ID

If thisargument is present, it specifiesthe handle ID relative to which the new handle
is created. Normally, the new handle becomes the last child of the parent handle
specified by 1D. However, this behavior can be changed by setting the
FIRST_CHILD or SIBLING keywords.

Omit this argument to create a new top-level handle without a parent.
Keywords

FIRST_CHILD

Set this keyword to create the new handle as the first child of the handle specified by
ID. Any existing children of 1D become later siblings of the new first child (i.e., the
existing first child becomes the second child, the second child becomes the third
child, etc.).

NO_COPY

Usually, when the VALUE keyword is used, the source variable memory is copied to
the handle value. If the NO_COPY keyword is set, the value data is taken away from
the source variable and attached directly to the destination. This feature can be used
to move data very efficiently. However, it has the side effect of causing the source
variable to become undefined.

SIBLING

Set this keyword to create the new handle as the sibling handle immediately
following ID. Any other siblings currently following ID become later siblings of the
new handle. Note that you cannot create a handle that is asibling of atop-level
handle.

VALUE

The value to be assigned to the handle.

Every handle can contain a user-specified value of any data type and organization.
Thisvalueis not used by the handle in any way, but exists entirely for the
convenience of the IDL programmer. Use this keyword to set the handle value when
the handleisfirst created.

If the VALUE keyword is not specified, the handle'sinitial value is undefined.

Obsolete IDL Features HANDLE_CREATE

26 Obsolete Routines

Handle values can be retrieved using the HANDLE_VALUE procedure.
Examples

The following commands create a top-level handle with 3 child handles. Each handle
is assigned a different string value:

;Create top-level handle without an initial handl e val ue:

top = HANDLE_ CREATE()

;Create first child of the top-1level handle:

first = HANDLE CREATE(top, VALUE='First child")

; Create second child of the top-Ilevel handl e:

second = HANDLE_CREATE(top, VALUE=" Second child")

;Create a new sibling between first and second.

;This handle is also a child of the top-level handle:

third = HANDLE CREATE(first, VALUE=" Another child, /SIBLING

HANDLE_CREATE Obsolete IDL Features

Obsolete Routines 27

HANDLE_FREE

This routine is obsolete and should not be used in new IDL code.

The HANDLE FREE procedure frees an existing handle, along with any dynamic
memory currently being used by its value. Any child handles associated with ID are
also freed.
Syntax
HANDLE_FREE, ID
Arguments
ID

The ID of the handle to be freed. Once the handle is freed, further use of it isinvalid
and causes an error to be issued.

Example

To free all memory associated with the top-level handle top, and all its children, use
the command:

HANDLE_FREE, top

Obsolete IDL Features HANDLE_FREE

28 Obsolete Routines

HANDLE_INFO

This routine is obsolete and should not be used in new IDL code.

The HANDLE_INFO function returns information about handle validity and
connectivity. By default, it returns True if the specified handle ID is valid. Keywords
can be set to return other types of information.

Syntax
Result = HANDLE_INFO(ID)
Arguments

ID

The D of the handle for which information is desired. This argument can be scalar or
array an array of IDs. The result of HANDLE_INFO has the same structure as 1D,
and each element gives the desired information for the corresponding element of ID.

Keywords

FIRST_CHILD

Set this keyword to return the handle ID of the first child of the specified handle. If
the handle has no children, O is returned.

NUM_CHILDREN
Set this keyword to return the number of children related to ID.
PARENT

Set this keyword to return the handle ID of the parent of the specified handle. If the
specified handle is atop-level handle (i.e., it has no parent), O is returned.

SIBLING

Set this keyword to return the handle ID of the sibling handle following ID. If ID has
no later siblings, or if ID isatop-level handle, O isreturned.

HANDLE_INFO Obsolete IDL Features

Obsolete Routines 29

VALID_ID

Set this keyword to return 1 if 1D represents a currently valid handle. Otherwise, zero
isreturned. Thisisthe default action for HANDLE_INFO if no other keywords are
specified.

Examples

The following commands demonstrate a number of different uses of
HANDLE_INFO:

;Print a nessage if handlel is a valid handle |D.

I F HANDLE | NFQ(handl e1l) THEN PRI NT, 'Valid handle.'
;Retrieve the handle ID of the first child of top.
handl e = HANDLE_ | NFQ(t op, /FI RST_CHI LD)

;Retrieve the handle ID of the next sibling of handlel.
next = HANDLE | NFQ(handl e1, /Sl BLI NG

Obsolete IDL Features HANDLE_INFO

30

HANDLE_MOVE

Obsolete Routines

This routine is obsolete and should not be used in new IDL code.

The HANDLE_MOVE procedure moves a handle (specified by Move ID) to a new
location. This new position is specified relative to Static_ID.

Syntax
HANDLE_MOVE, Satic_ID, Move 1D
Arguments

Static_ID

The handle ID relative to which the handle specified by Move_ID is moved. By
default, Move ID becomes the last child of Static_ID. This behavior can be changed
by specifying one of the keywords described below.

If Static_ID isset to 0, Move ID becomes atop level handle without any parent.
Static_ID cannot be a child of Move_ID.

Move_ID
The ID of the handle to be moved.

Keywords

FIRST_CHILD

Set this keyword to make Move_|D thefirst child of Static_ID. Any existing children
of Static_ID become later siblings of the new first child (i.e., the existing first child
becomes the second child, the second child becomes the third child, etc.).

SIBLING

Set this keyword to make Move_ID the sibling handle immediately following
Static_ID. Any siblings currently following Static_ID become later siblings of the

new handle. Note that you cannot move a handle such that is becomes asibling of a
top-level handle.

HANDLE_MOVE Obsolete IDL Features

Obsolete Routines

Example

; Create top-level handle:
top = HANDLE_ CREATE()
Create first child of top:
chil dl = HANDLE CREATE(t op)
; Create second child of top:
chil d2 = HANDLE_CREATE(t op)
; Move the first child to be the last child of top:
HANDLE MOVE, top, childl

Obsolete IDL Features

31

HANDLE_MOVE

32 Obsolete Routines

HANDLE_VALUE

Thisroutine is obsolete and should not be used in new IDL code.
The HANDLE VALUE procedure returns or sets the value of an existing handle.

Syntax

HANDLE_VALUE, ID, Value
Arguments

ID
A valid handle|D.
Value
When using HANDLE_ VALUE to return an existing handle value (the defaullt),

Vaue is a named variable in which the value is returned.

When using HANDLE_VALUE to set ahandle value, Value is the new value. Note
that handle values can have any IDL data type and organization.

Keywords

NO_COPY

By default, HANDLE VALUE works by making a second copy of the source data.
Although this techniqueisfine for small data, it can have a significant memory cost
when the data being copied islarge.

If the NO_COPY keyword is set, HANDLE_VALUE works differently. Rather than
copy the source data, it takes the data away from the source and attaches it directly to
the destination. This feature can be used to move data very efficiently. However, it
has the side effect of causing the source variable to become undefined. On aretrieve
operation, the handle value becomes undefined. On a set operation, the variable
passed as Value becomes undefined.

SET

Set this keyword to assign Value as the new handle value. The default isto retrieve
the current handle value.

HANDLE_VALUE Obsolete IDL Features

Obsolete Routines 33

Example

The following commands demonstrate the two different uses of HANDLE_VALUE:

. Retrieve the value of handlel into the variable current:
HANDLE VALUE, handl el, current

; Set the value of handlel to a 2-elenent integer vector:
HANDLE VALUE, handl el, [2, 3],/ SET

Obsolete IDL Features HANDLE_VALUE

34 Obsolete Routines

HDF_DFSD_ADDDATA

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_ADDDATA procedure writes data, aswell as al other information
set viacalsto HDF_DFSD_SETINFO and HDF_DFSD_DIMSET, to an HDFfile.

The Data array must have the same dimensions as the array in the file. The new SDS
is appended to thefile, unless the OVERWRITE keyword is set.

Syntax

HDF_DFSD_ADDDATA, Filename, Data [, /OVERWRITE]
[, SET_DIM=value{ must set either this or the DIM S keyword to
HDF_DFSD_SETINFO}] [, /SET_TYPE]

Arguments

Filename
A scalar string containing the name of the file to be written.
Data

An expression (typically an array) containing the data to write.
Keywords
OVERWRITE

Set this keyword to write Data as the first, and only, SDSin thefile. All previously-
written scientific data sets in the file are removed.

SET_DIM

Set this keyword to make the dimension information for the HDF file based upon the
dimensions of Data.

Note
You must set the number of dimensions in the HDF file, either by setting the
SET_DIM keyword or using the DIMS keyword to HDF_DFSD_SETINFO.

HDF_DFSD_ADDDATA Obsolete IDL Features

Obsolete Routines 35

SET_TYPE

Set this keyword to make the data type of the current SDS based on the data type of
the Data argument.

Obsolete IDL Features HDF_DFSD_ADDDATA

36 Obsolete Routines

HDF_DFSD DIMGET

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_DIMGET procedure retrieves information about the specified
dimension number of the current HDF file.

Syntax

HDF_DFSD_DIMGET, Dimension [, /FORMAT] [, /LABEL] [, SCALE=vector]
[, /UNIT]

Arguments

Dimension

The dimension number [0, 1, 2, ...] to get information about.
Keywords
FORMAT

Set this keyword to return the dimension format string.
LABEL

Set this keyword to return the dimension label string.
SCALE

Use this keyword to return scale information about the dimension. Set this keyword
to avector of values of the same type as the data.

UNIT

Set this keyword to return the dimension unit string.

HDF_DFSD_DIMGET Obsolete IDL Features

Obsolete Routines 37

HDF_DFSD DIMSET

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_DIMSET procedure sets the label, unit, format, or scale of
dimensionsin an HDF. Note that the label, unit, and format of a dataset must be set
simultaneously.

Syntax

HDF_DFSD_DIMSET, Dimension [, FORMAT=string] [, LABEL=string]
[, SCALE=vector] [, UNIT=string]

Arguments

Dimension

The dimension number that the label, unit, format or scale apply to.
Keywords
FORMAT

A string for the dimension format. This string should be a standard IDL formatting
string.

LABEL
A string for the dimension label.
SCALE
A vector of values used to set the dimension scale.

UNIT

A string for the dimension units.

Example
Suppose that a stored dataset is a 20 by 100 by 50 element floating-point array of

values representing water content within the volume of a cloud. Assume further that
each element in the 100-element dimension (the“Y” dimension) was sampled at 1/10

Obsolete IDL Features HDF_DFSD_DIMSET

38 Obsolete Routines

mile increments. Appropriate labeling, formatting, unit, and scaling information for
the Y dimension can be set with the following command.:

HDF_DFSD_DI MSET, 1, LABEL = 'Y Position', FORMAT = 'F8.2', $
UNIT = "Mles', SCALE = 0. 1*FI NDGEN(100)

HDF_DFSD_DIMSET Obsolete IDL Features

Obsolete Routines 39

HDF_DFSD ENDSLICE

This routine is obsolete and should not be used in new IDL code.
The HDF_DFSD_ENDSLICE procedure ends a sequence of calls started by

HDF_DFSD_STARTSLICE by closing the interna slice interface and synchronizing
thefile.

Syntax
HDF_DFSD_ENDSLICE

Example

See the example in the documentation for HDF_DFSD_STARTSLICE.

Obsolete IDL Features HDF_DFSD_ENDSLICE

40 Obsolete Routines

HDF_DFSD_GETDATA

This routine is obsolete and should not be used in new IDL code.
The HDF_DFSD_GETDATA procedure reads data from an HDF file.

Syntax

HDF_DFSD_GETDATA, Filename, Data [, /GET_DIMS{ Set only if you have not
caled HDF_DFSD_GETINFO with the DIMS keyword}] [, /GET_TY PE]

Arguments

Filename

A scalar string containing the name of the file to be read.
Data

A named variable in which the datais returned.
Keywords

GET_DIMS

Set this keyword to get dimension information for reading the data. This keyword
should only be used if one has not called HDF_DFSD_GETINFO with the DIMS
keyword

GET_TYPE
Set this keyword to get the data type for the current SDS.

HDF_DFSD_GETDATA Obsolete IDL Features

Obsolete Routines 41

HDF_DFSD GETINFO

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_GETINFO procedure retrieves information about the current HDF
file.

Note that calling HDF_DFSD_GETINFO with the DIMS or TY PE keywords may
alter which dataset is current. See “Reading an Entire Scientific Dataset” and
“Getting Other Information About SDSs” in the NCSA HDF Calling Interfaces and
Utilities documentation.

Note that reading alabel, unit, format, or coordinate system string that has more than
256 characters can have unpredictable results.

Syntax

HDF_DFSD_GETINFO, Filename [, CALDATA=variable] [, /COORDSY S|
[, DIMS=variable] [, /FORMAT] [, /LABEL] [, /LASTREF] [, /NSDS] [, /RANGE]
[, TYPE=variable] [, /UNIT]

Arguments

Filename

A scalar string containing the name of thefile to be read. A filenameis only needed
to determine SDS dimensions and/or the number of SDSsin afile.

Keywords

CALDATA

Set this keyword to a named variable which will contain the calibration data
associated with an SDS data set. The data will be returned in a structure of the form:

{ CAL: 0d, CAL_ERR 0d, OFFSET: 0d, $
OFFSET_ERR 0d, NUM TYPE: OL }

COORDSYS

Set this keyword to return the data coordinate system description string.

Obsolete IDL Features HDF_DFSD_GETINFO

42 Obsolete Routines

DIMS

Set this keyword to a named variable in which the dimensions of the current SDS are
returned in alongword array.

FORMAT

Set this keyword to return the data format description string.
LABEL

Set this keyword to return the data label description string.
LASTREF

Set this keyword to return the last reference number written or read for an SDS.
NSDS

Set this keyword to return the number of SDSsin thefile.
RANGE

Set this keyword to return the valid max/min values for the current SDS.
TYPE

Set this keyword to a named variable which returns a string describing the type of the
current SDS (e.g., ' BYTE', 'FLOAT", etc.).

UNIT

Set this keyword to return the data unit description string.
Example

The following commands read an SDS, including information about its dimensions
but not its annotations:

HDF_DFSD_CETI NFO, fil ename, DI MS=d, TYPE=t, RANGE-r, $
LABEL=l, UNI T=u, FORVAT=f, COORDSYS=c

FOR i = 0, N ELEMENTS(d)-1 DO BEG N

HDF_DFSD DI MGET, i, LABEL=dl, UNI T=du, FORMAT=df, SCALE=ds
ENDFOR
HDF _DFSD GETDATA, filenanme, data

HDF_DFSD_GETINFO Obsolete IDL Features

Obsolete Routines 43

HDF_DFSD GETSLICE

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_GETSLICE procedure reads a slice of data from the current
Hierarchical Data Format file.

Note
Before calling HDF_DFSD_GETSLICE, cal HDF_DFSD_GETINFO with the

DIMS and TY PE keywords to get the dimensions and type of the next data dlice.
Failure to get the dimensions and type will cause the HDF interface to attempt to
read the data incorrectly, and may cause unexpected results.

Syntax

HDF_DFSD_GETSLICE, Filename, Data [, COUNT=vector] [, OFFSET=vector]

Arguments

Filename
A scalar string containing the name of the file to be read.

Data
A named variable in which the data, read from the SDS, is returned.

Keywords
COUNT

An optional vector containing the countsto be used in reading Value. The defaultisto
read all elementsin each record taking the value of OFFSET into account.

OFFSET

A vector specifying the array indices within the specified record at which to begin
reading. OFFSET is a 1-dimensional array containing one element per HDF
dimension. The default value is zero for each dimension.

Obsolete IDL Features HDF_DFSD_GETSLICE

44 Obsolete Routines

Example

See the example in the documentation for HDF_DFSD_STARTSLICE.

HDF_DFSD_GETSLICE Obsolete IDL Features

Obsolete Routines 45

HDF_DFSD PUTSLICE

This routine is obsolete and should not be used in new IDL code.
The HDF_DFSD_PUTSLICE procedure writes a data dlice to the current HDF file.

Note
Before caling HDF_DFSD_PUTSLIDCE, call HDF_DFSD_SETINFO to set the
dimensions and attributes of the sliceand HDF_DFSD_STARTSLICE to initialize
the dlice interface.

Syntax
HDF_DFSD_PUTSLICE, Data [, COUNT=vector]
Arguments

Data

An array containing the data to write. Dimensions used to write the data are taken
from the dimensions of Data, unlessthe COUNT keyword is used.

Keywords
COUNT

An optional vector containing the counts to be used in writing Data. The counts do
have to match the dimensions (number or sizes), but the count cannot describe more
elements than exist.

Example

See the example in the documentation for HDF_DFSD_STARTSLICE.

Obsolete IDL Features HDF_DFSD_PUTSLICE

46 Obsolete Routines

HDF_DFSD_READREF

This routine is obsolete and should not be used in new IDL code.
The HDF_DFSD_READREF procedure specifies the reference number of the HDF

fileto be read by the next call to HDF_DFSD_GETINFO or
HDF_DFSD_GETDATA.
Syntax
HDF_DFSD_READREF, Filename, Refno
Arguments

Filename
A scalar string containing the name of the file to be read.
Refno

The reference number of the desired SDS.

HDF_DFSD_READREF Obsolete IDL Features

Obsolete Routines 47

HDF_DFSD_SETINFO

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_SETINFO procedure controls information associated with an HDF
file. Because of the manner in which the underlying HDF library was written, it is
necessary to set the dimensions and data type of a scientific data set the first time that
HDF_DFSD_SETINFO iscalled.

This procedure has many options, controlled by keywords. The order in which the
keywords are specified is unimportant as the routine insures the order of operation for
any given call to it. CLEAR and RESTART requests are performed first, followed by
type and dimension setting, followed by length setting, followed by the remaining
keyword requests.

If you are not writing any ancillary information, you can call
HDF_DFSD_ADDDATA with the SET_TY PE and/or SET_DIMS keywords.

Data string lengths should be set before, or at the same time as, writing the
corresponding data string. For example:

HDF_DFSD_SETI NFO, LEN _FORMAT=10, FORVAT='12. 3F
or

HDF_DFSD_SETI NFO, LEN_FORMAT=10
HDF_DFSD_SETI NFO, FORMVAT=' 12. 3F

Dueto the underlying C routines, it is necessary to set all four data strings at the same
time, or the unspecified strings are treated as*” (null strings).

For example:

HDF_DFSD_SETI NFO, LABEL = ' hi’
HDF_DFSD_SETINFO, UNIT = "ergs’

isthe same as:
HDF_DFSD _SETI NFO, LABEL='hi’', UNIT='', FORMAT='', COORDSYS=''
HDF_DFSD _SETI NFO, LABEL='', UN T='ergs’, FORMAT='', COORDSYS='’
Syntax

HDF_DFSD_SETINFO [, CALDATA=structure] [, /CLEAR]

[, COORDSY S=string] [, DIMS=vector] [, /BYTE|,/DOUBLE|, /FLOAT, |, /INT |
, ILONG] [, FORMAT=string] [, LABEL=string] [, LEN_LABEL=value]

[, LEN_UNIT=value] [, LEN_FORMAT=value] [, LEN_COORDSY S=value]

[, RANGE=[max, min]] [, /RESTART] [, UNIT=string]

Obsolete IDL Features HDF_DFSD_SETINFO

48

Obsolete Routines

Arguments

None

Keywords
BYTE

Set this keyword to make the SDS data type DFNT_UINTS8 (1-byte unsigned
integer).

CALDATA

Set this keyword to a structure containing calibration information. The structure
should contain five tags, the first four of which are double-precision floating-point,
and fifth of which should be long integer. For example:

caldata = { Cal: 1.0d $; Calibration factor.
Cal _FErr: 0.1d $; Calibration error.
O fset: 2.5d $; Uncalibrated offset.
O fset_Err: 0.1d $; Uncalibrated offset error.
Num Type: 5L $; Nunmber type of uncalib. data.

Some typical valuesfor the Num Type field include:

For byte data:

3L (DFNT_UCHARS)
21L (DFNT_UI NT8)

For integer data:

221 (DNFT_I NT16)
For long-integer data:

241 (DFNT_I NT32)
For floating-point data:

5L (DFNT_FLOAT32)
6L (DFNT_FLOAT64)

There are other types, but they are not native to IDL. They can befound in thehdf . h
header file for the HDF library.

CLEAR

Set this keyword to reset al possible set valuesto their default value.

HDF_DFSD_SETINFO Obsolete IDL Features

Obsolete Routines 49

COORDSYS
A string for the data coordinate system description.
DIMS

Set this keyword to a vector of dimensions to be used in writing the next SDS. For
example:

HDF_DFSD_SETI NFO, DIM5s = [10, 20, 30]
DOUBLE

Set this keyword to make the SDS data type DFNT_FLOAT64 (8-byte floating
point).

FLOAT

Set this keyword to make the SDS data type DFNT_FLOAT 32 (4-byte floating
point).

FORMAT

A string for the data format description.
INT

Set this keyword to make the SDS datatype DFNT_INT16 (2-byte signed integer).
LABEL

A string for the data label description.
LEN_LABEL

The label string length (default is 255).
LEN_UNIT

The unit string length (default is 255).
LEN_FORMAT

The format string length (default is 255).

Obsolete IDL Features HDF_DFSD_SETINFO

50 Obsolete Routines

LEN_COORDSYS

The format coordinate system string length (default is 255).
LONG

Set this keyword to make the SDS data type DFNT_INT32 (4-byte signed integer).
RANGE

The minimum and maximum range, represented as a 2-element vector of the same
data type as the data to be written. The first element is the maximum, the second is
the minimum. For example:

HDF_DFSD_SETI NFO, RANGE = [10, 0]
RESTART

Set this keyword to make the get (HDF_DFSD_GETSLICE) routine read from the
first SDSin thefile.

UNIT

A string for the data unit description.
Example

Write a 100x50 array of longs:

data = LONARR(100, 50)

HDF_DFSD_SETI NFO, /CLEAR, /LONG DI M5=[100, 50], $
RANGE=[MAX(data), M N(data)], $
LABEL=" pressure’, UNI T='pascals’, $
FORVAT=" F10. O’

HDF_DFSD_SETINFO Obsolete IDL Features

Obsolete Routines 51

HDF_DFSD_STARTSLICE

This routine is obsolete and should not be used in new IDL code.

The HDF_DFSD_STARTSLICE procedure prepares the system to write a slice of
datato an HDF file. HDF_DFSD_SETINFO must be called before
HDF _DFSD_STARTSLICE to set the dimensions and attributes of the slice.

This procedure must be called before calling HDF_DFSD_PUTSLICE, and must be
terminated with a call to HDF_DFSD_ENDSLICE.

Syntax
HDF_DFSD_STARTSLICE, Filename
Arguments

Filename

A scalar string containing the name of the file to be written.

Example

; Open an HDF file:
fi d=HDF_OPEN(' test. hdf',/ALL)

Create two datasets:
sl i cedat al=FI NDGEN(5, 10, 15)
sl i cedat a2=DI NDGEN(4, 5)

Use HDF_DFSD SETINFO to set the dinensions, then add
; the first slice:
HDF_DFSD_SETI NFO, LABEL="| abel 1' , DI M5=[5, 10, 15], /FLOAT
HDF_DFSD_STARTSLI CE, ' t est . hdf"'
HDF_DFSD_PUTSLI CE, slicedatal
HDF_DFSD_ENDSLI CE

Repeat the process for the second slice:
HDF_DFSD_SETI NFO, LABEL='Iabel 2', DI M5=[4, 5], /DOUBLE
HDF_DFSD_STARTSLI CE, ' t est . hdf"

HDF_DFSD_PUTSLI CE, slicedat a2
HDF_DFSD_ENDSLI CE
HDF_DFSD_SETI NFO, / RESTART

Use HDF_DFSD _CGETI NFO to advance slices and set slice

Obsolete IDL Features HDF_DFSD_STARTSLICE

52 Obsolete Routines

; attributes, then get the slices:
HDF_DFSD_GETI NFO, name, DI M5=di ms, TYPE=type
HDF_DFSD GETSLI CE, outl

HDF_DFSD_GETI NFO, nane, DI Ms=di ns, TYPE=type
HDF_DFSD_GETSLI CE, out 2

; Close the HDF file:
HDF_CLOSE('test. hdf')

;Check the first slice to see if everything worked:

IF TOTAL(out1 EQ slicedatal) EQ N_ELEMENTS(outl1l) THEN $
PRINT, 'SLICE 1 WRI TTEN READ CORRECTLY' ELSE $
PRI NT, 'SLICE 1 WRI TTEN READ | NCORRECTLY

; Check the second slice to see if everything worked:

I F TOTAL(out2 EQ slicedata2) EQ N _ELEMENTS(out?2) THEN $
PRI NT, "SLICE 2 WRI TTEN READ CORRECTLY' ELSE $
PRI NT, 'SLICE 2 WRI TTEN READ | NCORRECTLY'

IDL Output
SLI CE 1 WRI TTEN READ CORRECTLY

SLI CE 2 WRI TTEN READ CORRECTLY

HDF_DFSD_STARTSLICE Obsolete IDL Features

Obsolete Routines 53

HDF_ VD GETNEXT

The HDF_VD_GETNEXT function returns the reference number of the next object
insideaVDatain ah HDF file. If Idis-1, thefirst item in the VDatais returned,
otherwise |d should be set to a reference number previously returned by
HDF_VD_GETNEXT.HDF VD_GETNEXT returns-1if there was an error or there
are no more objects after the one specified by Id.

Syntax
Result = HDF_VD_GETNEXT(VData, |d)
Arguments

VData

The VData handle returned by a previous call to HDF_VD_ATTACH.
Id

A VGroup or VData reference number obtained by a previous call to
HDF_VG_GETNEXT or HDF_VD_GETNEXT. Alternatively, this value can be set
to -1 to return thefirst item in the VData.

Version History

Introduced: 4.0

Obsolete IDL Features HDF_VD_GETNEXT

54 Obsolete Routines

INP, INPW, OUTP, OUTPW

These routines are obsolete and should not be used in new IDL code.
Windows-Only Routines for Hardware Ports

You can address the hardware ports of your personal computer directly using the
following routines. In each case, Port is specified using the hexadecimal address of
the hardware port. For example, if serial port #1 of your PC is at address 3F8, you
would use the following IDL commandsto read that port:

paddr = ' 3F8' xSetpaddr to hexadecimal value.
data = | NPW paddr) Read data.

Result = INP(Port, [Dy . .. Dyl)

This function returns either one byte (if only the port number is specified) or an array
(the dimensions of which are specified by D, . . . Dy) read from the specified
hardware port. Port is the hardware port number. For example,

result = | NP(paddr)
would read a single byte, and
result = I NP(paddr, 2,4)
would read a two-element by four-element array.

Result = INPW(Port, [D4 . .. Dyl)

This function returns either one 16-bit word, as an integer (if only the port number is
specified), or an array (the dimensions of which are specified by D, . . . Dy) from the
specified hardware port. Port is the hardware port number.

OUTP, Port, Value

This procedure writes either one byte or an array of bytes to the specified hardware
port. Port is the hardware port number. Value is the byte value or array to be written.

OUTPW, Port, Value

This procedure writes either one 16-bit word or an array of words to the specified
hardware port. Port is the hardware port number. Value isthe integer value or array to
be written.

INP, INPW, OUTP, OUTPW Obsolete IDL Features

Obsolete Routines 55

LIVE Tools

The LIVE tools alow you to create, modify, and export visualizations directly from
the IDL command line. In many cases, you can modify your visualizations using the
LIVE tools graphica user interface directly without ever needing to return the IDL
command line. In some cases, however, you may wish to alter your visualizations
programmeatically rather than using the graphical user interface. Several LIVE
routines allow you to do this easily.

The process of using the L1V E tools begins with the creation of a LIVE window via
one of the four main LIVE routines: LIVE_CONTOUR, LIVE_IMAGE,
LIVE_PLQOT, and LIVE_SURFACE. When you use one of these four routines at the
IDL command line, you specify some datato be visualized and a L1V E window
appears. You can modify many of the properties of theitemsin your visualization by
double-clicking on theitem to call up a Properties dialog.

If you find that the graphical user interface does not allow you to perform the
operation you wish to perform — saving your visuaization as an image file, say —
you can use the auxiliary L1V E routines. These routines can be divided into two
groups:

* Overplotting and Annotation Routines that allow you to add annotations to an
existing LIVE window. These routinesinclude LIVE_LINE, LIVE_OPLOT,
LIVE _RECT, and LIVE_TEXT. (Lines, rectangles, and text can also be added
to LIVE windows using the graphical user interface.)

¢ Information and Control Routines that allow you to get information about an
existing LI1VE window, alter its properties, or export visualizations. These
routinesinclude LIVE_CONTROL, LIVE_DESTROQY, LIVE_EXPORT,
LIVE_INFO, LIVE_PRINT, and LIVE_STYLE.

To use the auxiliary routines, you will need to know the Name of the LIV E window
or item you wish to alter. To create an IDL variable containing the names of the
elements of aLIVE window, set the REFERENCE_OUT keyword equal to a named
variable when you first create your LIV E window. The returned variable will be a
structure that contains the names of al of the elements in the visualization you have
created. Use the contents of this structure to determine the value of the Name
argument for the auxiliary LIV E tools, or to determine the name of the L1V E window
you wish to alter.

Note
The LIVE tools do not utilize the !X, Y, and ! Z conventions. Setting these system
variables will have no effect on LIVE tool display.

Obsolete IDL Features LIVE_Tools

56 Obsolete Routines

LIVE_CONTOUR

The LIVE_CONTOUR procedure displays contour visualizations in an interactive
environment. Because the interactive environment requires extra system resources,
thisroutineis most suitable for relatively small data sets. If you find that performance
does not meet your expectations, consider using the Direct Graphics CONTOUR
routine or the Object Graphics IDLgrContour class directly.

After LIVE_CONTOUR has been executed, you can double-click on a contour line
to display a properties dialog. A set of buttonsin the upper left corner of the window
allows you to print, undo the last operation, redo the last “undone” operation, copy,
draw aline, draw arectangle, or add text.

(S [[Eel [~ [T A

A AN XX

Print Undo Redo Copy Line Rectangle Text

Figure 1: LIVE_CONTOUR Properties Dialog

You can control your LI1VE window after it is created using any of several auxiliary
routines. See “LIVE_Tools" on page 55 for an explanation.

Syntax

LIVE_CONTOUR [, Z4,..., Zy5] [, /IBUFFER] [, DIMENSIONS=[width,

height]{ normal units}] [, /DOUBLE] [, DRAW_DIMENSIONS=[width,

height]{ devive units}] [, ERROR=variable] [, INDEXED_COLOR]

[, INSTANCING={-1|0] 1}] [, LOCATION=[x, y]{ normal units}]

[, MANAGE_STYLE] [, NAME=structure] [, /NO_DRAW] [, /NO_SELECTION]
[,/NO_STATUS] [, /NO_TOOLBAR] [, PARENT_BASE=widget_id |,
TLB_LOCATION=[Xoffset, Yoffset]{ device units}]

[, PREFERENCE_FILE=filename{full path}] [, REFERENCE_OUT=variabl€]

[, RENDERER={0| 1}] [, REPLACE={structure | {0 |1|2|3|4}}]

[, STYLE=name or_reference] [, TEMPLATE_FILE=filename] [, TITLE=string]
[, WINDOW_IN=string] [, { X | Y}INDEPENDENT=value] [, {/X |/Y}LOG] [, {X |
Y} RANGE=[min, max]{dataunits}] [, { X | Y}_TICKNAME=array]

LIVE_CONTOUR Obsolete IDL Features

Obsolete Routines 57

Arguments

Zn

A vector of data. Up to 25 of these arguments may be specified. If any of the datais
stored in IDL variables of type DOUBLE, LIVE_CONTOUR uses double-precision
to store the data and to draw the result.

Keywords

BUFFER

Set this keyword to bypass the creation of a LIV E window and send the visualization
to an offscreen buffer. The WINDOW field of the reference structure returned by the
REFERENCE_OUT keyword will contain the name of the buffer.

DOUBLE

Set this keyword to force LIVE_CONTOUR to use double-precision to draw the
result. This has the same effect as specifying datain the Zn argument using IDL
variables of type DOUBLE.

DIMENSIONS

Set this keyword to atwo-element, floating-point vector of the form [width, height]
specifying the dimensions of the visualization in normalized coordinates. The default
is[1.0, 1.0].

DRAW_DIMENSIONS

Set thiskeyword equal to avector of the form [width, height] representing the desired
size of the LIVE tools draw widget (in pixels). The default is[452, 452].

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

Note
If anamed variableis passed in this keyword and an error occurs, the error GUI will

not be displayed.

Obsolete IDL Features LIVE_CONTOUR

58

Obsolete Routines

INDEXED_COLOR
If set, the indexed color mode will be used. The default is TrueColor.
INSTANCING

Set this keyword to 1 to instance drawing on, or O to turn it off. The default (-1) isto
useinstancing if and only if the “ software renderer” isbeing used (see RENDERER).
For more information, see “Instancing” in the Objects and Object Graphics manual.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.0, 0.0].

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIV E tool
window is destroyed. This keyword has no effect if the STYLE keyword is not set to
astyleitem.

NAME

Set this keyword to a structure containing suggested names for the dataitems to be
created for this visualization. See the REPLACE keyword for details on how they will
be used. The fields of the structure are as follows. (Any or all tags may be set.)

Tag Description

DATA Dependent Data Name(s)

IX Independent X Data Name

Y Independent Y Data Name

Table 1: Fields of the NAME keyword

The default for afield isto use the given variable name. If the variable does not have
aname (i.e., is an expression), a default name is automatically generated. The

LIVE_CONTOUR Obsolete IDL Features

Obsolete Routines 59

dependent data names will be used in a round-robin fashion if more data than names
areinput.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing results of
LIVE_CONTOUR. Thisisuseful if multiple visualizations and/or annotations are
being created via callsto other LIVE_Toolsin order to reduce unwanted draws and
help speed the display.

NO_STATUS

Set this keyword to prevent the creation of the status bar.
NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.
PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creation of
aLIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. It is expected that the user who
wishestoinsert atool into their own widget application will determine the setting
from the parent base sent to the tool.

Note
LIVE _DESTROY on awindow is recommended when using PARENT_BASE so
that proper memory cleanup is done. Simply destroying the parent base is not
sufficient.

Note
When specifying a PARENT_BASE, that parent base must be running in anon-
blocking mode. Putting a LIVE tool into arealized base already controlled by
XMANAGER will override the XMANAGER modeto /NO_BLOCK even if
blocking had been in effect.

Obsolete IDL Features LIVE_CONTOUR

60 Obsolete Routines

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the created
items. The fields of the structure are shown in the following table.

Tag Description
WIN Window Name
VIS Visualization Name
XAXIS X-Axis Name
YAXIS Y-Axis Name

GRAPHIC Graphic Name(s)
LEGEND Legend Name

DATA Dependent Data Name(s)
IX Independent X Data Name
Y Independent Y Data Name

Table 2: Fields of the LIVE_ CONTOUR Reference Structure

Note
You can also determine the name of an item by opening its properties dialog and
checking the “Name” field (or for Windows, by clicking thetitle bar).

RENDERER

Set this keyword to 1 to use the “software renderer”, or O to use the “ hardware
renderer”. The default (-1) isto use the setting in the IDE (IDL Development
Environment) preferences; if the IDE is not running, however, the default is hardware
rendering. For more information, see “Hardware vs. Software Rendering” in the
Objects and Object Graphics manual.

REPLACE
Set this keyword to a structure containing tags as listed for the NAME keyword, with

scalar values corresponding to the replacement options listed below. (Any or all of
the tags may be set.) The replacement settings are used to determine what action to

LIVE_CONTOUR Obsolete IDL Features

Obsolete Routines 61
take when an item (such as data) being input would have the same name as one
aready existing in the given window or buffer (WINDOW _IN).

Alternatively, this keyword may be set to asingle scalar value, which is equivalent to
setting each tag of the structure to that choice.

Setting Action Taken
0 New items will be given unique names.
1 Existing itemswill be replaced by new items (i.e., the old items will be
deleted and new ones created).
2 User will be prompted for the action to take.
3 The values of existing items will be replaced. Thiswill cause dynamic

updating to occur for any current uses, e.g., a visualization would
redraw to show the new value.

4 Default. Option O will be used for items that do not have names (e.g.,
datainput as an expression rather than a named variable, with no name
provided viathe NAME keyword). Option 3 will be used for all
named items.

Table 3: REPLACE keyword Settings and Action Taken

STYLE

Set this keyword to either a string specifying a style name created using
LIVE_STYLE.

TITLE

Set this keyword to a string specifying the title to give the main window. It must not
already bein use. A default will be chosen if no title is specified.

TLB_LOCATION

Set this keyword to a two-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIV E window from the upper |eft corner of the screen. This
keyword has no effect if the PARENT_BASE keyword is set. The default is [0, 0].

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aLIVE tool window or a
LIVE tool buffer, in which to display the visualization. The WIN tag of the

Obsolete IDL Features LIVE_CONTOUR

62 Obsolete Routines

REFERENCE_OUT structure from the creation of the LIVE tool will provide the
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

XINDEPENDENT

Set this keyword to avector specifying the X valuesfor LIVE_CONTOUR. The
default is the data's index values.

Note
Only one independent vector is allowed; al dependent vectors will use the
independent vector.

YINDEPENDENT

Set this keyword to a vector specifying the Y valuesfor LIVE_CONTOUR. The
default is the data's index values.

Note
Only one independent vector is allowed; al dependent vectors will use the
independent vector.

XLOG

Set this keyword to make the X axisalog axis. The default is O (linear axis).
YLOG

Set this keyword to makethe Y axisalog axis. The default is O (linear axis).
XRANGE

Set this keyword equal to atwo-element array that defines the minimum and
maximum values of the X axis range. The default equals the values computed from
the data range.

YRANGE

Set this keyword equal to atwo-element array that defines the minimum and
maximum values of the Y axis range. The default equals the values computed from
the data range.

LIVE_CONTOUR Obsolete IDL Features

Obsolete Routines 63

X_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
X axis. The default equals the values computed from the data range.

Y_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
Yaxis. The default equal s the values computed from the data range.

Examples

Create a dataset to display:
Z=Di ST(10)

Di splay the contour. To mani pul ate contour lines, click on the
pl ot to access a graphical user interface
LI VE_CONTOUR, Z

Note
Thisisa“Live’ situation. When data of the same name is used multiple times
within the same window, it always represents the same internal dataitem. For
example, if one does the following:

Y=i ndgen(10)

LI VE_PLOT, Y, W NDOW.IN=w, DI MENSI ONS=d, LOCATI ON=l ocl

Y=i ndgen(20)

LI VE_PLOT, Y, W NDOW.IN=w, DI MENSI ONS=d, LOCATI ON=l oc2
Thefirst plot will updateto usethe Y of the second plot when the second plot is
drawn. If the user wants to display 2 “tweaks’ of the same data, a different variable
name must be used each time, or at least one should be an expression (thus not a
named variable). For example:

LI VE_PLOT, Y1,...
LI VE_PLOT, Y2,..

or;

LI VE_PLOT, Y, ..
LI VE_PLOT, myFunc(Y), ...

In last example, the data of the second visualization will be given a default unique
name since an expression rather than a named variable isinput.

Obsolete IDL Features LIVE_CONTOUR

64 Obsolete Routines

Note
The above shows the default behavior for naming and replacing data, which can be
overridden using the NAME and REPLACE keywords.

Version History
Introduced: 5.0
See Also

CONTOUR

LIVE_CONTOUR Obsolete IDL Features

Obsolete Routines 65

LIVE_CONTROL

The LIVE_CONTROL procedure allows you to set the properties of (or elements
within) avisualization in aLIVE tool from the IDL command line. See
“LIVE_Tools” on page 55 for additional discussion of the routines that control the
LIVE_tools.

Note
The LIVE tools do not utilize the !X, Y, and ! Z conventions. Setting these system
variables will have no effect on LIVE tool display.

Syntax

LIVE_CONTROL, [Namé] [, /DIALOG] [, ERROR=variable] [, /NO_DRAW]
[, PROPERTIES=structure] [, /SELECT] [, /UPDATE_DATA]
[, WINDOW_IN=string]

Arguments

Name

If keywords DIALOG and/or PROPERTIES are used, Name is a string (case-
insensitive) containing the name of awindow visualization or graphic to operate on.
WINDOW_IN will default to the window or buffer, if only oneis present in the IDL
session.

If keyword UPDATE_DATA is used, Name must be an IDL variable with the same
name as one already used in the given window or buffer (WINDOW_IN). In this case
thereis no default. If UPDATE_DATA is not set, the parameter must be a name of a
window, visualization or visualization € ement.

Keywords

DIALOG

Set this keyword to have the editable properties dial og of the visualization or graphic
appear.

Obsolete IDL Features LIVE_CONTROL

66 Obsolete Routines

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

Note
If anamed variableis passed in this keyword and an error occurs, the error GUI will
not be displayed.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

PROPERTIES

Set this keyword to a properties structure with which to modify the given
visualization or graphic. The structure should contain one or more tags as returned
fromaLIVE_INFO call on the same type of item.

UPDATE_DATA

Set this keyword to force the window to update all of its visualizations that contain
the given data passed in the parameter to LIVE_CONTROL.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are aso visible in visualization window titlebars. If only one LIVE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

; Create a dataset to display:
X=i ndgen(10)

;. Plot the dataset:
LI VE PLOT, X

LIVE_CONTROL Obsolete IDL Features

Obsolete Routines 67

Modi fy the dataset:
X=X+2

Repl ace ol d val ues of X
LI VE_CONTROL, X, /UPDATE_DATA

Version History
Introduced: 5.1
See Also

LIVE_INFO, LIVE_STYLE

Obsolete IDL Features LIVE_CONTROL

68 Obsolete Routines

LIVE_DESTROY

The LIVE_DESTROY procedure allows you to destroy awindow visualization or an
element in avisualization.

Syntax

LIVE_DESTROY, [Namey,..., Nameys] [, /ENVIRONMENT] [, ERROR=variable]
[,/NO_DRAW] [, /PURGE] [, WINDOW_IN=string]

Arguments

Name

A string containing the name of avalid LIVE visualization or element. If a
visualization is supplied, all componentsin the visualization will be destroyed. Up to
25 components may be specified in asingle call. If not specified, the entire window
or buffer (WINDOW _IN) and its contents will be destroyed.

Warning
Using WIDGET_CONTROL to destroy the parent base of aLIVE tool before using
LIVE_DESTROQY to clean up will leave hanging object references.

Keywords
ENVIRONMENT

Destroysthe LIVE_ Tools environment (background processes).

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

Note
If anamed variableis passed in this keyword and an error occurs, the error GUI will
not be displayed.

LIVE_DESTROY Obsolete IDL Features

Obsolete Routines 69

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

PURGE

Destroys LIVE_ Tools (use this keyword for cleaning up the system after fatal errors
in LIVE_ Tools). This keyword may cause the loss of dataif not used correctly.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aLIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one LIVE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

LI VE DESTROY, 'Line Plot Visualization'

; Destroy window (if only one wi ndow present):
LI VE_DESTROY

Version History

Introduced: 5.1

Obsolete IDL Features LIVE_DESTROY

70 Obsolete Routines

LIVE_EXPORT

The LIVE_EXPORT procedure allows the user to export a given visualization or
window to an imagefile.

Syntax

LIVE_EXPORT [, /APPEND] [, COMPRESSION={0 | 1 | 2}{ TIFF only}]

[, /IDIALOG] [, DIMENSIONS=[width, height]] [, ERROR=variable]

[, FILENAME=string] [, ORDER={0| 1}{JPEG or TIFF}]

[, /PROGRESSIVE{JPEG only}] [, QUALITY={0| 1| 2}{for VRML} |{Oto
100} {for JPEG}] [, RESOLUTION=value] [, TYPE={'BMFP' | 'JPG' |'PIC' | 'SRF' |
TIF |'XWD' ['VRML}] [, UNITS={0| 1| 2}] [, VISUALIZATION_IN=string]

[, WINDOW_IN=string]

Arguments
None
Keywords
APPEND

Specifies that the image should be added to the existing file, creating a multi-image
TIFFfile.

COMPRESSION (TIFF)

Set this keyword to select the type of compression to be used:
¢ 0=none (default)
e 2=PackBits.

DIALOG

Set this keyword to have a dialog appear alowing the user to choose the image type
and specifications.

LIVE_EXPORT Obsolete IDL Features

Obsolete Routines 71

DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
dimensions of the image in units specified by the UNITS keyword. The default is
[640, 480] pixels.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By defauilt,
errors are reported viaa GUI.

Note
If anamed variableis passed in thiskeyword and an error occurs, the error GUI will

not be displayed.

FILENAME

Set this keyword equal to a string specifying the desired name of the imagefile. The
defaultisl i ve_export . ext ensi on, where ext ensi on isone of the following:

brmp, jpg, jpeg, pic, pict, srf, tif, tiff, xwd, vrni
ORDER (JPEG, TIFF)

Set this keyword to have the image written from top to bottom. Default is bottom to
top.

PROGRESSIVE (JPEG)

Set this keyword to write the image as a series of scans of increasing quality. When
used with a slow communications link, a decoder can generate alow-quality image
very quickly, and then improve its quality as more scans are received.

QUALITY (JPEG, VRML)

This keyword specifies the quality index of VRML images and JPEG images. For
VRML, the values are O=Low, 1=Medium, 2=High. For JPEG therangeis 0
("terrible") to 100 ("excellent"). This keyword has no effect on non-JPEG or non-
VRML images.

RESOLUTION
Set this keyword to a floating-point value specifying the device resolution in
centimeters per pixel. The default is 72 DPI=2.54 (cm/in)/ 0.0352778 (cm/pixel).

Obsolete IDL Features LIVE_EXPORT

72 Obsolete Routines

Note
It isimportant to match the eventual output device's resolution so that text is scaled

properly.

TYPE
Set this keyword equal to a string specifying the image type to write. Valid strings
are: ‘BMP, ‘JPG’, ‘JPEG’ (default), ‘PIC, ‘PICT’, ‘SRF, ‘TIF, ‘TIFF, ‘XWD’,
and ‘VRML'.

UNITS

Set this keyword to indicate the units of measure for the DIMENSIONS keyword.
Valid values are 0=Device (default), 1=Inches, 2=Centimeters.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of aL1VE tool
visualization to export. The VIS field from the REFERENCE_OUT keyword from
the creation of the LIVE tool will provide the visualization name. If
VISUALIZATION_IN is not specified, the whole window or buffer (WINDOW _IN)
will be exported.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer, to export. The WIN tag of the REFERENCE_OUT structure from
the creation of the LIVE tool will provide the window or buffer name. Window
names are also visible in visualization window titlebars. If only one LI1VE tool
window (or buffer) ispresent in the IDL session, this keyword will default to it.

Examples

LI VE_EXPORT, W NDOW.I N='Live Plot 2'
Version History

Introduced: 5.1

LIVE_EXPORT Obsolete IDL Features

Obsolete Routines 73

LIVE_IMAGE

The LIVE_IMAGE procedure displays visualizations in an interactive environment.
Double-click on theimageto display a propertiesdialog. A set of buttonsin the upper
left corner of the image window allows you to print, undo the last operation, redo the
last “undone” operation, copy, draw aline, draw arectangle, or add text.

(S [[Eel [~ [T [A]

AAA DX NN

Print Undo Redo Copy Line Rectangle Text

Figure 2: LIVE_IMAGE Properties Dialog

You can control your LIVE window after it is created using any of several auxiliary
routines. See “LIVE_Tools” on page 55 for an explanation.

Syntax

LIVE_IMAGE, Image [, RED=byte vector] [, GREEN=byte vector]

[, BLUE=byte vector] [, /BUFFER] [, DIMENSIONS=[width, height]{ normal
units}] [, DRAW_DIMENSIONS=[width, height]{ devive units}]

[, ERROR=variable] [, /INDEXED_COLOR] [, INSTANCING={-1|0] 1}]

[, LOCATION=[X, y]{ normal units}] [, /MANAGE_STYLE] [, NAME=structure]
[,/NO_DRAW] [, /NO_SELECTION] [, /NO_STATUS] [, /NO_TOOLBAR]

[, PARENT_BASE=widget_id|, TLB_L OCATION=[Xoffset, Yoffset]{ device units}]
[, PREFERENCE_FILE=filename{full path}] [, REFERENCE_OUT=variable]

[, RENDERER={0| 1}] [, REPLACE={structure | {0 |1|2|3|4}}]

[, STYLE=name or_reference] [, TEMPLATE_FILE=filename] [, TITLE=string]
[, WINDOW_IN=string]

Arguments

Image

A two- or three-dimensional array of image data. The three-dimensional array must
befor theform [3,X,Y] or [X,3,Y] or [X,Y,3].

Obsolete IDL Features LIVE_IMAGE

74 Obsolete Routines

Keywords

BLUE
Set this keyword equal to a byte vector of blue values.

Note
The BLUE, GREEN, and RED keywords are only used for 2D image data. They are
used to form the color table. The 2D array isaset of valuesthat arejust indexesinto

this table.

BUFFER

Set this keyword to bypass the creation of a LIVE window and send the visualization
to an offscreen buffer. The WINDOW field of the reference structure returned by the
REFERENCE_OUT keyword will contain the name of the buffer.

DIMENSIONS

Set this keyword to atwo-element vector of the form [width, height] to specify the
dimensions of the image in units specified by the UNITS keyword. The default is
[1.0, 1.0].

DRAW_DIMENSIONS

Set this keyword to a two-element vector of the form [width, height] to specify the
size of the LIVE tools draw widget (in pixels). The default is[452, 452].

Note
This default value may be different depending on previous template projects.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By defaullt,
errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will

not be displayed.

LIVE_IMAGE Obsolete IDL Features

Obsolete Routines 75

GREEN

Set this keyword equal to a byte vector of green values.

Note
The BLUE, GREEN, and RED keywords are only used for 2D image data. They are

used to form the color table. The 2D array isaset of valuesthat arejust indexesinto
this table.

INDEXED_COLOR

If set, the indexed color mode will be used. The default is TrueColor. (See Using IDL
for more information on color modes.)

INSTANCING

Set this keyword to 1 to instance drawing on, or 0 to turn it off. The default (-1) isto
useinstancing if and only if the “ software renderer” is being used (see RENDERER).
For more information, see “Instancing” in the Objects and Object Graphics manual.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.0, 0.0].

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIV E tool
window is destroyed. This keyword will have no effect if the STYLE keyword is not

set to astyleitem.

Obsolete IDL Features LIVE_IMAGE

76

Obsolete Routines

NAME

Set this keyword to a structure containing suggested names for the itemsto be created
for this visualization. See the REPLACE keyword for details on how they will be
used. Thefields of the structure are as follows. (Any or all of the tags may be set.)

Tag Description

DATA Dependent Data Name(s)
CT Color Table Name

Table 4: Fields of the NAME keyword

The default for afield is to use the given variable name. If the variable does not have
aname (i.e., is an expression), a default name is automatically generated.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing results of
LIVE_CONTOUR. Thisisuseful if multiple visualizations and/or annotations are
being created via callsto other LIVE_Toolsin order to reduce unwanted draws and
help speed the display.

NO_STATUS

Set this keyword to prevent the creation of the status bar.
NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.

PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creation of
aLIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. It is expected that the user who
wishestoinsert atool into their own widget application will determine the setting
from the parent base sent to the tool.

LIVE_IMAGE Obsolete IDL Features

Obsolete Routines 77

Note
LIVE _DESTROY on awindow is recommended when using PARENT_BASE so

that proper memory cleanup is done. Simply destroying the parent base is not
sufficient.

Note
When specifying a PARENT_BASE, that parent base must be running in anon-
blocking mode. Putting a LIVE tool into arealized base already controlled by
XMANAGER will override the XMANAGER modeto /NO_BLOCK even if
blocking had been in effect.

RED

Set this keyword equal to a byte vector of red values.

Note
The BLUE, GREEN, and RED keywords are only used for 2D image data. They are
used to form the color table. The 2D array isaset of valuesthat arejust indexesinto
thistable.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the created
items. The fields of the structure are shown in the following table. Note that the
COLORBAR* field does not show up with TrueColor images:

Tag Description
WIN Window Name
VIS Visualization Name
GRAPHIC Graphic Name
CT Color Table Name
COLORBAR* Colorbar Name
DATA Data Name

Table 5: Fields of the LIVE_IMAGE Reference Structure

Obsolete IDL Features LIVE_IMAGE

78 Obsolete Routines

RENDERER

Set this keyword to 1 to use the “ software renderer”, or O to use the “hardware
renderer”. The default (-1) isto use the setting in the IDE (IDL Development
Environment) preferences; if the IDE is not running, however, the default is hardware
rendering. For more information, see “Hardware vs. Software Rendering” in the
Objects and Object Graphics manual.

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement options listed below. (Any or all of the
tags may be set.) The replacement settings are used to determine what action to take
when an item (such as data) being input would have the same name as one aready
existing in the given window or buffer (WINDOW_IN).

Setting Action Taken
0 New items will be given unique names.
1 Existing items will be replaced by new items (i.e., the old items will
be deleted and new ones created).
2 User will be prompted for the action to take.
3 The values of existing items will be replaced. Thiswill cause

dynamic updating to occur for any current uses, e.g., avisualization
would redraw to show the new value.

4 Default. Option O will be used for items that do not have names (e.g.,
datainput as an expression rather than a named variable, with no
name provided viathe NAME keyword). Option 3 will be used for
al named items.

Table 6: REPLACE keyword Settings and Action Taken

STYLE

Set this keyword to either a string specifying a style name created using
LIVE_STYLE.

TITLE

Set this keyword to a string specifying thetitle to give the main window. It must not
aready bein use. A default will be chosen if no titleis specified.

LIVE_IMAGE Obsolete IDL Features

Obsolete Routines 79

TLB_LOCATION

Set this keyword to a two-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIVE window from the upper left corner of the screen. This
keyword has no effect if the PARENT_BASE keyword is set. The default is [0, 0].

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aLIVE tool window, or a
LIVE tool buffer, in which to display the visualization. The WIN tag of the
REFERENCE_OUT structure from the creation of the LIVE tool will provide the
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

Examples

LI VE_I MAGE, nyl nmage
Version History
Introduced: 5.0
See Also

TV, TVSCL

Obsolete IDL Features LIVE_IMAGE

80 Obsolete Routines
LIVE_INFO

The LIVE_INFO procedure allows the user to get the properties of aLIVE tool.
Syntax

LIVE_INFO, [Name] [, ERROR=variable] [, PROPERTIES=variable]
[, WINDOW_IN=string]

Arguments

Name

A string containing the name of avisualization or element (case-insensitive). The
default is to use the window or buffer (WINDOW_IN).

Keywords
ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By defaullt,
errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

PROPERTIES

Set this keyword to a named variable to contain the returned properties structure. For
adescription of the structures, see Properties Structures bel ow.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names
are also visible in visualization window titlebars. If only one L1V E tool window (or
buffer) is present in the IDL session, this keyword will default to it.

LIVE_INFO Obsolete IDL Features

Obsolete Routines 81

Structure Tables for LIVE_INFO and LIVE CONTROL
The following tables describe the properties structures used by LIVE_INFO and
LIVE_CONTROL (viathe PROPERTIES keyword) for:

¢ Color Names
¢ Line Annotations
¢ Rectangle Annotations

¢ Text Annotations

e Axes

» Colorbars
* Images

e Legends

e Surfaces

* Entire Visudizations

e Windows
Color Names

The following color names are the possible values for color properties:

* Black * Red * Green * Yellow

* Blue * Magenta e Cyan e Dark Gray
» Light Gray * Brown e Light Red » Light Green
» Light Blue * Light Cyan ¢ Light Magenta * White

Line Annotations

The fields in the properties structure of Line Annotations are as follows:

Tag Description

thick 1to 10 pixels

Table 7: Line Annotation Properties Structure

Obsolete IDL Features LIVE_INFO

82

LIVE_INFO

Obsolete Routines

Tag Description
arrow_start 1 =arrow head at line start, 0 = no arrowhead
arrow_end 1 = arrow head at line start, 0 = no arrowhead
arrow_size 0.0 to 0.3 normalized units
arrow_angle | 1.0to 179.0 degrees
linestyle O=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot dot, 5=long
dash
hide 1 =hidden, 0 = visible
name scalar string (unique within all graphics)
color see “Color Names’ on page 81
location [X, y] normalized units
dimensions [width, height] normalized units
uvalue any value of any type (only returned in structure if defined)

Table 7: Line Annotation Properties Structure (Continued)

Rectangle Annotations

Thefieldsin the properties structure of Rectangle Annotations are as follows:

Tag Description
thick 1to 10 pixels
linestyle 0O=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot dot, 5=long
dash
hide 1=hidden, O=visible
name scalar string (unique within all graphics)
color see “Color Names’ on page 81
location [X, y] normalized units
dimensions | [width, height] normalized units

Table 8: Rectangle Annotation Properties Structure

Obsolete IDL Features

Obsolete Routines

83

Tag

Description

uvalue

any value of any type (only returned in structure if defined)

Table 8: Rectangle Annotation Properties Structure (Continued)

Text Annotations

Thefields in the properties structure of Text Annotations are as follows:

Tag Description
fontsize 9to 72 points
fontname Helvetica, Courier, Times, Symbol, and Other (where Other
isavalid name of afont on the local system)
textangle 0.0to 360.0 degrees
alignment 0.0to 1.0 where 0.0 = right justified and 1.0 = left justified
location [X, y] normalized units
hide 1=hidden, O=visible
name scalar string (unique within all graphics)
value string (scalar or vector) annotation formula (see note below)

enable formatting

set to allow “!” chars for font commands

color see “Color Names® on page 81
uvaue any value of any type (only returned in structure if defined)
Table 9: Text Annotation Properties Structure
Note

Each vector element of the annotation formula (see “value” tag above) is parsed
once, left to right, for vertical bars (]).

e Two vertical bars surrounding a data item name will be replaced by the
corresponding data value(s), possibly requiring multiple lines.

« Two adjacent bars will be replaced by asingle bar.

e Two bars surrounding text that is not a dataitem name will be left asis.

Obsolete IDL Features

LIVE_INFO

84

AXxes

LIVE_INFO

Obsolete Routines

The fields in the properties structure of Axes are asfollows:

Tag

Description

title_FontSize

9to 72 points

title_Fontname

Helvetica, Courier, Times, Symbol, and Other (where Other is
avalid name of afont on the local system)

title_Color

see “Color Names’ on page 81

tick_FontSize

9to 72 points

tick_Fontname

Helvetica, Courier, Times, Symbol, and Other (where Other is
avalid name of afont on the local system)

tick_FontColor

see “Color Names’ on page 81

gridStyle see linestyle

color see “Color Names’ on page 81

thick 1to 10 pixels

location [X, y] data units

minor number of minor ticks (minimum Q)

major number of major ticks (minimum 0)

default_minor set to compute default number of minor ticks

default_major set to compute default number of major ticks

tickLen normalized units* 100 = percent of visualization dimensions

subticklen normalized units* 100 = percent of ticklen

tickDir 0 = up (or right), 1 = down (or left)

textPos 0 = below (or left), 1 = above (or right)

tickFormat standard IDL FORMAT string (See STRING function)
excluding parentheses

exact set to use exact range specified

Table 10: Axis Properties Structure

Obsolete IDL Features

Obsolete Routines

85
Tag Description
log set to display axisaslog
hide 1=hidden, O=visible
name scalar string (unique within all graphics)

compute_range

set to compute axis range from data min/max

tickName if defined, vector of strings to use at major tick marks
uvalue any value of any type (only returned in structure if defined)
Table 10: Axis Properties Structure (Continued)
Colorbars

Thefields in the properties structure of Colorbars are as follows:

Tag

Description

title_Fontsize

9to 72 points

title_Fontname

Helvetica, Courier, Times, Symbol, and Other (where Other isa
valid name of afont on the local system)

title_Color see “Color Names™ on page 81
tick_FontSize seefontsize
tick_Fontname | seefonthame

tick_FontColor

see “Color Names™ on page 81

color see “Color Names’ on page 81

thick 1to 10 pixels

location [X, y]; where [0, 0] = lower left and [1, 1] = position where the
entire colorbar fitsinto the upper right of the visualization

minor number of minor ticks (minimum 0)

major number of major ticks (minimum 0)

default_minor set to compute default number of minor ticks

Obsolete IDL Features

Table 11: Colorbar Properties Structure

LIVE_INFO

86

Obsolete Routines

Tag Description
default_magjor set to compute default number of major ticks
tickLen normalized units * 100 = percent of visualization dimensions
subticklen normalized units* 100 = percent of ticklen
tickFormat standard IDL FORMAT string (See STRING function)
excluding parentheses
show_axis set to display the colorbar axis
show_outline set to display the colorbar outline
axis thick see thick
dimensions [width, height] normalized units
hide 1=hidden, O=visible
name scalar string (unique within all graphics)
uvalue any value of any type (only returned in structure if defined)
Table 11: Colorbar Properties Structure (Continued)
Contours

LIVE_INFO

Thefields in the properties structure of Contours are as follows:

Tag Description
min_value minimum contour value to display
max_value maximum contour value to display
downhill set to display downhill tick marks
fill set to display contour levels asfilled
c_thick vector of thickness values (see thick)
c_linestyle vector of linestyle values (see linestyle)
c_color vector of color names (see “Color Names™ on page 81)

Table 12: Contour Properties Structure

Obsolete IDL Features

Obsolete Routines

87

Tag Description
default n levels | set to default the number of levels
n_level s specify a positive number for a specific number of levels
hide 1=hidden, O=visible
name scalar string (unique within al graphics)
uvalue any value of any type (only returned in structure if defined)

*The MIN and MAX value of the data are returned as contour levels when N_LEVELSiis set.
Because of this, when setting N_LEVELS, contour plots appear to have N-2 contour |evels because
thefirst (MIN) and last (MAX) level is not shown. With LIVE_CONTOUR, thisresultsin alegend
that contains unnecessary itemsin the legend (the MIN and the MAX contour level).

Table 12: Contour Properties Structure (Continued)

Images

The fields in the properties structure of Images are as follows:

Tag

Description

order

set to draw from top to bottom

sizing_constraint

[0]1]2] O=Natural, 1=Aspect, 2=Unrestricted

dont_byte scale

set to inhibit byte scaling the image

palette name of managed colortable

hide 1=hidden, O=visible

name scalar string (unique within al graphics)

uvalue any value of any type (only returned in LIVE_INFO structure

if defined)

Obsolete IDL Features

Table 13: Image Properties Structure

LIVE_INFO

88

Legends

LIVE_INFO

Obsolete Routines

The fields in the properties structure of Legends are as follows:

Tag

Description

title_FontSize

9to 72 points

titte_Fontname

Helvetica, Courier, Times, Symbol, and Other (where Other is
avalid name of afont on the local system)

titte_Color

see “Color Names’ on page 81

item_fontSize

seefontsize

item_fontName

Helvetica, Courier, Times, Symbol, and Other (where Other is
avalid name of afont on the local system)

text_color color of item text (see “Color Names® on page 81)

border_gap normalized units* 100 = percent of item text height

columns number of columnsto display the items in (minimum Q)

gap normalized units* 100 = percent of item text height

glyph_Width normalized units* 100 = percent of item text height

fill_color see “Color Names’ on page 81

outline_color see “Color Names’ on page 81

outline_thick see thick

location [x, y]; where [0, O] = lower left and [1, 1] = position where the
entire legend fits into the upper right of the visualization

show_fill set to display thefill color

show_outline set to display the legend outline

title_text String to display in the legend title

item_format standard IDL FORMAT string (See STRING function)
excluding parentheses (contour legends only)

hide 1=hidden, O=visible

Table 14: Legend Properties Structure

Obsolete IDL Features

Obsolete Routines 89
Tag Description
name scalar string (unique within al graphics)
uvalue any value of any type (only returned in structure if defined)
Table 14: Legend Properties Structure (Continued)
Surfaces
The fields in the properties structure of Surfaces are as follows:
Tag Description
min_value minimum plot line value to display
max_value maximum plot line value to display
lineStyle 0=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot dot,
5=long dash
color see “Color Names® on page 81
thick 1to 10 pixels
bottom see “ Color Names’ on page 81
style O=point, 1=wire, 2=solid, 3=ruledXZ, 4=ruledY Z, 5=lego
(wire), 6=lego (solid)
shading O=flat, 1=Gouraud
hidden_lines Set to not display hidden lines or points
show_skirt set to display the surface skirt
skirt z value at which skirt is drawn (data units)
hide 1=hidden, O=visible
name scalar string (unique within all graphics)
uvalue any value of any type (only returned in structure if defined)
Table 15: Surface Properties Structure
Obsolete IDL Features LIVE_INFO

90 Obsolete Routines

Entire Visualizations

The fields in the properties structure of Entire Visualizations are as follows:

Tag Description

location [X, y] normalized units

dimensions [width, height] normalized units

transparent set to avoid erasing to the background color

color background color (see “Color Names’ on page 81)

hide 1=hidden, O=visible

name scalar string (unique within all graphics)

uvalue any value of any type (only returned in structure if defined)

Table 16: Visualization Properties Structure

Windows

Thefields in the properties structure of Windows are as follows:

Tag Description
dimensions 2-element integer vector (pixels)
hide boolean (O=show, 1=hide)
location 2-element integer vector (pixels) from upper left
corner of screen
title string

Table 17: Windows Properties Structure

Examples

LI VE_INFO, 'x axis', PROPERTIES=nyProps
Version History

Introduced: 5.1

LIVE_INFO Obsolete IDL Features

Obsolete Routines 91

See Also

LIVE_CONTROL, LIVE_STYLE

Obsolete IDL Features LIVE_INFO

92 Obsolete Routines

LIVE_LINE

The LIVE_LINE procedureis an interface for line annotation.
Syntax

LIVE_LINE[, ARROW_ANGLE=value{1.0to 179.0}] [, /ARROW_END]

[, ARROW_SIZE=value{0.0to 0.3}] [, /ARROW_START] [, COLOR="color name'
1[, /DIALOG] [, DIMENSIONS=[width, height]] [, ERROR=variable] [, /HIDE]

[, LINESTYLE={0|21]2|3]|4|5}] [, LOCATION=[X, y]] [, NAME=string]
[,/NO_DRAW] [, /NO_SELECTION] [, REFERENCE_OUT=variabl€]

[, THICK=pixels{1to 10}] [, VISUALIZATION_IN=string]

[, WINDOW_IN=string]

Arguments
None
Keywords

ARROW_ANGLE

Set this keyword to a floating-point number between 1.0 and 179.0 degrees to
indicate the angle of the arrowheads. The default is 30.0.

ARROW_END

Set this keyword to indicate an arrowhead should be drawn at the end of theline. Itis
not drawn by default.

ARROW_SIZE

Set this keyword to afloating-point number between 0.0 and 0.3 (normalized
coordinates) to indicate the size of the arrowheads. The default is 0.02.

ARROW_START

Set this keyword to indicate an arrowhead should be drawn at the start of theline. Itis
not drawn by default.

LIVE_LINE Obsolete IDL Features

Obsolete Routines 93

COLOR

Set this keyword to a string (case-sensitive) of the color to be used for theline. The
default is*Black’. The following colors are available:

» Black * Red e Green * Yellow

» Blue * Magenta e Cyan e Dark Gray

« Light Gray e Brown e Light Red « Light Green

e Light Blue e Light Cyan ¢ Light Magenta * White
DIALOG

Set this keyword to display the line properties dialog appear. The dialog will have al
known properties supplied by keywords filled in.

DIMENSIONS

Set this keyword to atwo-element vector of the form [width, height] to specify the X
and Y components of the line in normalized coordinates. The default is[0.2, 0.2].

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By defaullt,
errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

HIDE

Set this keyword to a boolean value indicating whether this item should be hidden.
e 0=Visble (default)
e 1=Hidden
LINESTYLE

Set this keyword to a pre-defined line style integer:
e 0=solid line (default)

Obsolete IDL Features LIVE_LINE

94

Obsolete Routines

e 1=dotted

e 2=dashed

e 3 =dashdot

e 4 =dash dot dot

¢ 5=longdash
LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.5, 0.5].

Note
LOCATION may be adjusted to take into account window decorations.

NAME

Set this keyword equal to a string containing the name to be associated with thisitem.
The name must be unique within the given window or buffer (WINDOW _IN). If not
specified, aunique name will be assigned automatically.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining names of the modified
visualization’s properties. The fields of the structure are shown in the following table.

Tag Description
WIN Window Name
VIS Visualization Name

GRAPHIC Graphic Name the line created

Table 18: Fields of the LIVE_LINE Reference Structure

LIVE_LINE Obsolete IDL Features

Obsolete Routines 95

THICK

Set this keyword to an integer value between 1 and 10, specifying the line thickness
to be used to draw the line, in pixels. The default is one pixel.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of aL1VE tool
visualization. The VISfield from the REFERENCE_OUT keyword from the creation
of the LIVE tool will provide the visualization name. If only one visudization is
present in the window or buffer (WINDOW _IN), this keyword will default to it.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aLIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LI1VE tool will provide the window or buffer name. Window names are
also visible in visualization window titlebars. If only one L1V E tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

LI VE_LINE, WNDOWIN="Live Plot 2', $
VI SUALI ZATI ONLI N=' i ne pl ot visualization'
; Units are in the visualization units (based on axis ranges).

Version History
Introduced: 5.1
See Also

LIVE_RECT, LIVE_TEXT

Obsolete IDL Features LIVE_LINE

96 Obsolete Routines
LIVE_LOAD

The LIVE_LOAD procedure loads into memory the complete set of routines
necessary to run all LIVE tools. By default, portions of the set are loaded when first
needed during the IDL session. If you expect to frequently use the tools, you may
wishto call LIVE_LOAD from your IDL “startup file".

Syntax

LIVE_LOAD

Arguments
None

Keywords
None

Version History

Introduced: 5.2

LIVE_LOAD Obsolete IDL Features

Obsolete Routines 97

LIVE_OPLOT

The LIVE_OPLOT procedure allows the insertion of datainto pre-existing plots.

Syntax

LIVE_OPLOT, Yvectorl[,..., Yvector25] [, ERROR=variable]

[, INDEPENDENT=vector] [, NAME=structure] [, /NEW_AXES] [, /NO_DRAW]
[, /NO_SELECTION] [, REFERENCE_OUT=variable] [, REPLACE={structure |
{0]21]2]|3|4}}][, SUBTYPE={"LinePlot’ | ‘ScatterPlot’ | ‘Histogram’ |
‘PolarPlot’}] [, VISUALIZATION_IN=string] [, WINDOW_IN=string] [, { X |
Y}_TICKNAME=array] [, {X | Y}AXIS_IN=string]

Arguments

YVector

A vector argument of data. Up to 25 of these arguments may be specified.
Keywords
ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By defauilt,
errors are reported viaa GUI.

Note
If anamed variableis passed in this keyword and an error occurs, the error GUI will

not be displayed.

INDEPENDENT

Set this keyword to an independent vector specifying the X-Values for
LIVE_OPLOT.

Obsolete IDL Features LIVE_OPLOT

98 Obsolete Routines

NAME

Set this keyword to a structure containing suggested names for the dataitems to be
created for thisvisualization. Seethe REPLACE keyword for details on how they will
be used. Thefields of the structure are asfollows. (Any or al of the tags may be set.)

Tag Description

DATA Dependent Data Name(s)

I Independent Data Name

Table 19: Fields of the NAME keyword

The default for afield is to use the given variable name. If the variable does not have
aname (i.e., is an expression), a default name is automatically generated. The
dependent data names will be used in around-robin fashion if more data than names
areinput.

Note
Only one independent vector is allowed; all dependent vectors will use the

independent vector.

NEW_AXES

Set this keyword to generate anew set of axes for thisplot line. If this keyword is
specified, the [XY]AXIS_IN keywords will not be used.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

LIVE_OPLOT Obsolete IDL Features

Obsolete Routines 99

REFERENCE_OUT

Set this keyword to avariable to return a structure defining the names of the modified
items. The fields of the structure are shown in the following table.

Tag Description
WIN Window Name
VIS Visualization Name
XAXIS X-Axis Name
YAXIS Y-Axis Name
GRAPHIC Graphic Name(s)
LEGEND Legend Name
DATA Dependent Data Name(s)
[Independent Data Name

Table 20: Fields of the LIVE_OPLOT Reference Structure
REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement optionslisted below. (Any or all of the
tags may be set.) The replacement settings are used to determine what action to take
when an item (such as data) being input would have the same name as one already
existing in the given window or buffer (WINDOW _IN).

Setting Action Taken
0 New items will be given unique names.
1 Existing itemswill be replaced by new items (i.e., the old itemswill be
deleted and new ones created).
2 User will be prompted for the action to take.
3 The values of existing itemswill be replaced. Thiswill cause dynamic

updating to occur for any current uses, e.g., a visualization would
redraw to show the new value.

Table 21: REPLACE keyword Settings and Action Taken

Obsolete IDL Features LIVE_OPLOT

100 Obsolete Routines

Setting Action Taken

4 Default. Option O will be used for items that do not have names (e.g.,
datainput as an expression rather than anamed variable, with no name
provided viathe NAME keyword). Option 3 will be used for al
named items.

Table 21: REPLACE keyword Settings and Action Taken
SUBTYPE

Set this keyword to astring (case-insensitive) containing the desired type of plot.
SUBTY PE defaults to whatever is being inserted into, if the [XY]AXIS_IN keyword
is set. If the keywords are not set, then the default isline plot. Valid strings are:

e ‘LinePlot’ (default)

o ‘ScatterPlot’

e ‘Histogram’

e ‘PolarPlot’
Note

If inserting into a group (defined by the set of axes) that is polar, SUBTY PE cannot
be defined as line, scatter, or histogram. The oppositeis also true: if inserting into a
line, scatter, or histogram group, then SUBTY PE cannot be defined as polar.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of a LI1VE tool
visualization. The VISfield from the REFERENCE_OUT keyword from the creation
of the LIVE tool will provide the visualization name. If only one visualization is
present in the window or buffer (WINDOW_IN), this keyword will default to it.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aLIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names are
also visiblein visualization window titlebars. If only one L1VE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

LIVE_OPLOT Obsolete IDL Features

Obsolete Routines 101

X_TICKNAME

Set this keyword equal to an array of stringsto be used to label thetick mark for the X
axis. The default equal s the values computed from the data range.

Y_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
Yaxis. The default equal s the values computed from the data range.

XAXIS_IN

Set this keyword equal to the string name of an existing axis. The name can be
obtained from the REFERENCE_OUT keyword, or visually from the GUI. The
default isto use thefirst set of axesin the plot.

Note
If thiskeyword is set, you must also set the YAXIS _IN keyword, and both keywords
must be set to a“pair” of axes. The X and Y axes given must be associated with the

same plot line.

YAXIS_IN

Set this keyword equal to the string name of an existing axis. The name can be
obtained from the REFERENCE_OUT keyword, or visually from the GUI. The
default isto use the first set of axesin the plot.

Note
If this keyword is set, you must also set the XAXIS_IN keyword, and both
keywords must be set to a“pair” of axes. The X and Y axes given must be

associated with the same plot line.

Examples

LI VE_OPLOT, tenpData, pressureData
Version History

Introduced: 5.1

Obsolete IDL Features LIVE_OPLOT

102 Obsolete Routines

See Also

LIVE_PLOT, PLOT, OPLOT

LIVE_OPLOT Obsolete IDL Features

Obsolete Routines 103

LIVE_PLOT

The LIVE_PLOT procedure creates an interactive plotting environment.

Click on asection of the plot to display a properties dialog. A set of buttonsin the
upper left corner of the image window allows you to print, undo the last operation,
redo the last “undone” operation, copy, draw aline, draw arectangle, or add text.

(S [[Eel [~ [T [A]

AAA DX NN

Print Undo Redo Copy Line Rectangle Text

Figure 3: LIVE_PLOT Properties Dialog

You can control your LIVE window after it is created using any of several auxiliary
routines. See “LIVE_Tools” on page 55 for an explanation.

Syntax

LIVE_PLQOT, Yvectorl [, Yvector2,..., Yvector25] [, /BUFFER]

[, DIMENSIONS=[width, height]{ normal units}] [, /[DOUBLE]

[, DRAW_DIMENSIONS=[width, height]{ devive units}] [, ERROR=variable]
[,/HISTOGRAM |, /LINE|,/POLAR |,/SCATTER] [, /INDEXED_COLOR]
[, INSTANCING={-1|0] 1}] [, LOCATION=[x, y]{ normal units}]

[, INDEPENDENT=vector] [, /MANAGE_STYLE] [, NAME=structure]
[,/INO_DRAW] [, /NO_SELECTION] [, /NO_STATUS] [, /NO_TOOLBAR]

[, PARENT_BASE=widget id|, TLB_LOCATION=[Xoffset, Yoffset]{ device units}]
[, PREFERENCE_FILE=filename{full path}] [, REFERENCE_OUT=variable]
[, RENDERER={0| 1}] [, REPLACE={structure | {0 |1|2|3|4}}]

[, STYLE=name_or_reference] [, TEMPLATE_FILE=filename] [, TITLE=string]
[, WINDOW_IN=string] [, {/X | /Y}LOG] [, {X | Y} RANGE=[min, max]{ data
units}] [, {X | Y}_TICKNAME=array]

Obsolete IDL Features LIVE_PLOT

104 Obsolete Routines

Arguments

YVector

A vector of data. Up to 25 of these arguments may be specified. If any of the datais
stored in IDL variables of type DOUBLE, LIVE_PLOT uses double precision to
store the data and to draw the resullt.

Keywords

BUFFER

Set this keyword to bypass the creation of a L1V E window and send the visualization
to an offscreen buffer. The WINDOW field of the reference structure returned by the
REFERENCE_OUT keyword will contain the name of the buffer.

DIMENSIONS

Set this keyword to atwo-element, floating-point vector specifying the dimensions of
the visualization in normalized coordinates. The default is[1.0, 1.0].

DOUBLE

Set this keyword to force LIVE_PLOT to use double-precision to draw the result.
This has the same effect as specifying datain the Y Vector argument using IDL
variables of type DOUBLE.

DRAW_DIMENSIONS

Set this keyword equal to avector of the form [width, height] representing the desired
size of the LIVE tools draw widget (in pixels). The default is [452, 452].

Note
This default value may be different depending on previous template projects.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

LIVE_PLOT Obsolete IDL Features

Obsolete Routines 105

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will

not be displayed.

HISTOGRAM

Set this keyword to represent plot values as a histogram.
INDEPENDENT

Set this keyword to an independent vector specifying X-valuesfor LIVE_PLOT.
INDEXED_COLOR

If set, the indexed color mode will be used. The default is TrueColor. (See Using IDL
for more information on color modes.)

INSTANCING

Set this keyword to 1 to instance drawing on, or 0 to turn it off. The default (-1) isto
useinstancing if and only if the “ software renderer” is being used (see RENDERER).
For more information, see “Instancing” in the Objects and Object Graphics manual.

LINE

Set this keyword to represent plot values as aline plot. Thisisthe default. Alternate
choices are provided by keywords HISTOGRAM, POLAR, and SCATTER.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.0, 0.0].

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIV E tool
window is destroyed. This keyword will have no effect if the STY LE keyword is not
set to astyleitem.

Obsolete IDL Features LIVE_PLOT

106

Obsolete Routines

NAME

Set this keyword to a structure containing suggested names for the dataitems to be
created for thisvisualization. Seethe REPLACE keyword for details on how they will
be used. Thefields of the structure are asfollows. (Any or al of the tags may be set.)

Tag Description

DATA Dependent Data Name(s)

I Independent Data Name

Table 22: Fields of the NAME keyword

The default for afield is to use the given variable name. If the variable does not have
aname (i.e., is an expression), a default name is automatically generated. The
dependent data names will be used in around-robin fashion if more data than names
areinput.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

NO_STATUS

Set this keyword to prevent the creation of the status bar.
NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.
PARENT_BASE

Set this keyword to the widget 1D of an existing base widget to bypass the creation of
aLIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. To insert atool into your widget
application, you must determine the setting from the parent base sent to the tool.
LIVE _DESTROY on awindow is recommended when using PARENT_BASE so
that proper memory cleanup is done. Destroying the parent base is not sufficient.

LIVE_PLOT Obsolete IDL Features

Obsolete Routines

Note

107

When specifying a PARENT_BASE, that parent base must be running in anon-
blocking mode. Putting a LIVE tool into arealized base already controlled by
XMANAGER will override the XMANAGER modeto /NO_BLOCK even if

blocking had been in effect.

POLAR

Set this keyword to represent plot values as apolar plot. In this case, the arguments to
LIVE_PLOT represent values of r (radius), while the INDEPENDENT keyword
represents the values of T (angle thetd). If POLAR is set, you must specify

INDEPENDENT.
REFERENCE_OUT

Set this keyword to avariable to return a structure defining the names of the modified
items. The fields of the structure are shown in the following table.

Tag Description
WIN Window Name
VIS Visualization Name
XAXIS X-Axis Name
YAXIS Y-Axis Name
GRAPHIC Graphic Name(s)
LEGEND Legend Name
DATA Dependent Data Name(s)

Independent Data Name

Table 23: Fields of the LIVE_PLOT Reference Structure

RENDERER

Set this keyword to 1 to use the “software renderer”, or O to use the “ hardware
renderer”. The default (-1) isto use the setting in the IDE (IDL Development
Environment) preferences; if the IDE is not running, however, the default is hardware
rendering. For more information, see “Hardware vs. Software Rendering” in the

Using IDL manual.

Obsolete IDL Features

LIVE_PLOT

108 Obsolete Routines

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement options listed below. (Any or all of the
tags may be set.) The replacement settings are used to determine what action to take
when an item (such as data) being input would have the same name as one already
existing in the given window or buffer (WINDOW_IN).

Setting Action Taken
0 New itemswill be given unique names.
1 Existing items will be replaced by new items (i.e., the old items
will be deleted and new ones created).
2 User will be prompted for the action to take.
3 The values of existing items will be replaced. Thiswill cause

dynamic updating to occur for any current uses, e.g., a
visualization would redraw to show the new value.

4 Default. Option O will be used for items that do not have names
(e.g., datainput as an expression rather than a named variable,
with no name provided viathe NAME keyword). Option 3 will be
used for all named items.

Table 24: REPLACE keyword Settings and Action Taken

SCATTER
Set this keyword to represent plot values as a scatter plot.
STYLE

Set this keyword to either a string specifying a style name created with
LIVE_STYLE.

Note
If STYLE isnot set, the default plot style will be used.

TITLE

Set this keyword to a string specifying thetitle to give the main window. It must not
aready bein use. A default will be chosen if no titleis specified.

LIVE_PLOT Obsolete IDL Features

Obsolete Routines 109

TLB_LOCATION

Set this keyword to a two-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIVE window from the upper left corner of the screen. This
keyword has no effect if the PARENT_BASE keyword is set. The default is [0, 0].

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aLIVE tool window or a
LIVE tool buffer, in which to display the visualization. The WIN tag of the
REFERENCE_OUT structure from the creation of the LIVE tool will provide the
window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

XLOG

Set this keyword to make the X axisalog axis. The default is O (linear axis).
YLOG

Set this keyword to makethe Y axisalog axis. The default is O (linear axis).
XRANGE

Set this keyword equal to atwo-element array that defines the minimum and
maximum values of the X axis range. The default equals the values computed from
the data range.

YRANGE

Set this keyword equal to atwo-element array that defines the minimum and
maximum values of the Y axis range. The default equal's the values computed from
the data range.

X_TICKNAME

Set thiskeyword equal to an array of stringsto be used to label thetick mark for the X
axis. The default equals the values computed from the data range.

Y_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
Yaxis. The default equal s the values computed from the data range.

Obsolete IDL Features LIVE_PLOT

110 Obsolete Routines

Examples

Plot two data sets sinultaneously:
LI VE_PLOT, tenpdata, pressureData

Note
Thisisa“Live’ situation. When data of the same name is used multiple times
within the same window, it always represents the same internal dataitem. For
example, if one does the following:

Y= i ndgen(10)

LI VE_PLOT, Y, WNDOW.I N=w, DI MENSI ONS=d, LOCATI ON=l ocl
Y = indgen(20)

LI VE_PLOT, Y, W NDOW.I N=w, DI MENSI ONS=d, LOCATI ON=I oc2

Thefirst plot will update to usethe'Y of the second plot when the second plot is
drawn. If the user wants to display 2 “tweaks’ of the same data, a different variable
name must be used each time, or at least one should be an expression (thus not a
named variable). For example:

LI VE_PLOT, Y1,...
LI VE_PLOT, Y2,...

or

LI VE_PLOT, Y,...
LI VE_PLOT, myFunc(Y), ...

In last example, the data of the second visualization will be given a default unique
name since an expression rather than a named variable isinput.

Note
The above shows the default behavior for naming and replacing data, which can be
overridden using the NAME and REPL ACE keywords.

Version History
Introduced: 5.0
See Also

LIVE_OPLOT, PLOT, OPLOT

LIVE_PLOT Obsolete IDL Features

Obsolete Routines 111

LIVE_PRINT

The LIVE_PRINT procedure allows the user to print a given window to the printer.
Syntax

LIVE_PRINT [, /DIALOG] [, ERROR=variable] [, WINDOW _IN=string]
Arguments

None
Keywords

DIALOG
Set this keyword to have a print dialog appear.
ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will

not be displayed.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LI1VE tool will provide the window or buffer name. Window names are
also visiblein visualization window titlebars. If only one L1VE tool window (or
buffer) is present in the IDL session, this keyword will default toit.

Obsolete Keywords

The following keywords are obsol ete:
e SETUP
For information on obsolete keywords, See Appendix O, “Obsolete Features’.

Obsolete IDL Features LIVE_PRINT

112 Obsolete Routines

Examples

LI VE PRI NT, WNDOW I N="Live Plot 2'
Version History
Introduced: 5.1
See Also

DIALOG_PRINTJOB, DIALOG_PRINTERSETUP

LIVE_PRINT Obsolete IDL Features

Obsolete Routines 113

LIVE_RECT

The LIVE_RECT procedure is an interface for insertion of rectangles.
Syntax

LIVE_RECT [, COLOR="color name'] [, /DIALOG] [, DIMENSIONS=[width,

height]] [, ERROR=variable] [, /HIDE] [, LINESTYLE={0|1|2|3|4]|5}]

[, LOCATION=[x, y]] [, NAME=string] [, /NO_DRAW] [, /NO_SELECTION]

[, REFERENCE_OUT=variable] [, THICK=pixels{ 1 to 10}]
[, VISUALIZATION_IN=string] [, WINDOW_IN=siring]

Arguments
None
Keywords
COLOR

Set this keyword to a string (case-sensitive) of the color to be used for the rectangle.
The default is ‘Black’. The following colors are available:

» Black * Red e Green * Yellow

* Blue * Magenta e Cyan » Dark Gray

e Light Gray * Brown e Light Red e Light Green

» Light Blue e Light Cyan e Light Magenta * White
DIALOG

Set this keyword to have the rectangle dialog appear. This dialog will fill in known
attributes from set keywords.

DIMENSIONS

Set this keyword to atwo-element, floating-point vector of the form [width, height] to
specify the dimensions of the rectangle in normalized coordinates. The default is[0.2,
0.2].

Obsolete IDL Features LIVE_RECT

114 Obsolete Routines

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By default,
errors are reported viaa GUI.

Note
If anamed variableis passed in this keyword and an error occurs, the error GUI will
not be displayed.

HIDE

Set this keyword to a boolean value indicating whether this item should be hidden.
* 0= Visble (default)
e 1=Hidden
LINESTYLE

Set this keyword to a pre-defined line style integer:
* 0=Solid line (default)

e 1=dotted

e 2=dashed

e 3 =dashdot

e 4 =dash dot dot

 5=longdash
LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.5, 0.5].

Note
LOCATION may be adjusted to take into account window decorations.

LIVE_RECT Obsolete IDL Features

Obsolete Routines 115

NAME

Set thiskeyword equal to a string containing the name to be associated with thisitem.
The name must be unique within the given window or buffer (WINDOW _IN). If not
specified, a unique name will be assigned automatically.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set thiskeyword to a variable to return a structure defining the names of the modified
items. The fields of the structure are shown in the following table.

Tag Description
WIN Window Name
VIS Visualization Name
GRAPHIC Graphic Name the rectangle created

Table 25: Fields of the LIVE_RECT Reference Structure
THICK

Set this keyword to an integer value between 1 and 10, specifying the line thickness
to be used to draw the line, in pixels. The default is one pixel.

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of a LI1VE tool
visualization. The VISfield from the REFERENCE_OUT keyword from the creation
of the LIVE tool will provide the visualization name. If only one visualization is
present in the window or buffer (WINDOW_IN), this keyword will default to it.

WINDOW _IN
Set this keyword equal to a name (string, case-sensitive) of aLIVE tool window or a

LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names are

Obsolete IDL Features LIVE_RECT

116 Obsolete Routines

also visiblein visualization window titlebars. If only one L1VE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

LI VE_RECT, LOCATI ON=[O0.1,0.1], DI MENSI ONS=[0.2,0.2],$
W NDOW I N=" Live Plot 2',VISUALI ZATION IN="line plot'

Version History
Introduced: 5.1
See Also

LIVE_LINE, LIVE_TEXT

LIVE_RECT Obsolete IDL Features

Obsolete Routines 117

LIVE_STYLE

The LIVE_STYLE function allows the user to create a style.

Syntax

Syle=LIVE_STYLE ({ 'contour’ | 'image’ | 'plot' | 'surface’}

[, BASE_STYLE=style name] [, COLORBAR_PROPERTIES=structure]

[, ERROR=variable] [, GRAPHIC_PROPERTIES=structure] [, GROUP=widget_id]
[, LEGEND_PROPERTIES=structure] [, NAME=string] [, /SAVE]

[, TEMPLATE_FILE=filename] [, VISUALIZATION_PROPERTIES=structure]
[,{X]Y |Z} AXIS_PROPERTIES=structure])

Arguments

Type
A string (case-insensitive) specifying the visualization style type. Available types
include: plot, contour, image, and surface.

Keywords

BASE_STYLE

Set this keyword equal to a string (case-insensitive) containing the name of a
previously saved style. It will be used for defaulting unspecified properties. If not
specified, only those properties you provide will be put into the style. The basic styles
that will always exist include:

Visualization Type Style Name
plot ‘Basic Plot’
contour ‘Basic Contour’
image ‘Basic Image’
surface ‘Basic Surface’

Table 26: Base Style Strings

Obsolete IDL Features LIVE_STYLE

118

Obsolete Routines

COLORBAR_PROPERTIES
The table below lists the structure of the COLORBAR_PROPERTIES keyword.

Tag

Description

title_FontSize

9to 72 points

title_Fontname

Helvetica, Courier, Times, Symbol, and Other (where Other is
avalid name of afont on the local system)

title_Color see color table
tick_FontSize see fontsize
tick_Fontname | seefontname

tick_FontColor

see color table

color see color table
thick 1to 10 pixels
location [X, y] normalized units
minor number of minor ticks (minimum 0)
major number of magjor ticks (minimum 0)
default_minor set to compute default number of minor ticks
default_major set to compute default number of major ticks
tickLen normalized units* 100 = percent of visualization dimensions
subticklen normalized units* 100 = percent of ticklen
tickFormat see format
show_axis set to display the colorbar axis
show_outline set to display the colorbar outline
axis_thick see thick
dimensions [width, height] normalized units
hide 1=hidden, O=visible
Table 27: Colorbar Properties Structure
LIVE_STYLE Obsolete IDL Features

Obsolete Routines

119

GRAPHIC_PROPERTIES

Set this keyword equal to a scalar or vector of structures defining the graphic
propertiesto use in creating the style. (Use avector if you want successive graphicsto
have different properties, e.g., different colored linesin aline plot. The structures are
used in around-robin fashion.) Not all properties need be specified (see
BASE_STYLE). The complete structure definitions are listed in the following tables.

Plots
Tag Data Type/Description
color string (see color table)
hide boolean (1=hidden, O=visible)
linestyle integer (O=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash dot
dot, 5=long dash)
nSum integer (1 to number of elements to average over)
symbol_size [x,y] normalized unitsrelative to the visualization
symbol_type | integer (1-7)
thick integer (1 to 10 pixels)
Table 28: Plot Graphic Properties Structure
Images
Tag Data Type/Description
hide boolean (1=hidden, O=visible)
order boolean (set to draw from top to bottom)
sizing_constraint integer (O=natural, 1=aspect, 2=unrestricted)

Table 29: Image Graphic Properties Structure

Obsolete IDL Features

LIVE_STYLE

120

Contours

Obsolete Routines

Tag

Data Type/Description

downhill

boolean (set to display downhill tick marks)

fill

boolean (set to display contour levels as filled)

hide

boolean (1=hidden, O=visible)

n_levels

integer (number of levels)

c_thick

vector of thickness values

c_linestyle

vector of linestyle values

c_color

vector of color names

default n levels

integer (set to default number of levels)

Table 30: Contour Graphic Properties Structure

Surfaces
Tag Data Type/Description

bottom string (see color table)

color string (see color table)

hidden _lines boolean (1=don’t show, O=show)

hide boolean (1=hidden, O=visible)

lineStyle integer (O=solid, 1=dotted, 2=dashed, 3=dash dot, 4=dash
dot dot, 5=long dash)

shading boolean (0=flat, 1=Gouraud)

show_skirt boolean (1=show, O=don’t show)

skirt float (z value at which skirt is drawn [data units])

style integer (O=point, 1=wire, 2=solid, 3=ruledXZ, 4=ruledY Z,
5=lego (wire), 6=lego (solid))

thick integer (1 to 10 pixels)

Table 31: Surface Graphic Properties Structure

LIVE_STYLE

Obsolete IDL Features

Obsolete Routines

GROUP

121

Set this keyword to the widget ID of the group leader for error message display. This
keyword is used only when the ERROR keyword is not set. If only one LIVE tool
window is present in the IDL session, it will default to that.

LEGEND_PROPERTIES

Set this keyword equal to a structure defining the legend propertiesto usein creating
the style. Not all properties need be specified (see BASE_STYLE). The complete
structure definitions for different types of styles are listed in the following tables.

Tag

Description

title_FontSize

9to 72 points

titte_Fontname

Helvetica, Courier, Times, Symbol, and Other (where Other
isavalid name of afont on the local system)

titte_Color see color table

item_fontSize seefontsize

item_fontName | see fonthame

text_color see color

border_gap normalized units* 100 = percent of item text height
columns number of columns to display the items in (minimum O)
gap normalized units* 100 = percent of item text height
glyph_Width normalized units* 100 = percent of item text height
fill_color see color table

outline_color see color table

outline thick see thick

location [X, y] normalized units

show_fill set to display thefill color

show_outline set to display the legend outline

Obsolete IDL Features

Table 32: Legend Properties Structure

LIVE_STYLE

122 Obsolete Routines

Tag Description

hide 1=hidden, O=visible

Table 32: Legend Properties Structure (Continued)
NAME

Set this keyword to a string containing a name for the returned style. If the SAVE
keyword is set, the name must be unique template file. If not specified, anamewill be
automatically generated.

SAVE

Set this keyword to save the style in the template file. The supplied Name must not
already exist in the template file or an error will be returned.

VISUALIZATION_PROPERTIES

Set this keyword equal to a structure defining the visualization propertiesto usein
creating the style. Not all properties need be specified (see BASE_STYLE). The
complete structure definition is in the following table.

Tag Data Type

color string (see color table) for background

hide boolean

transparent boolean

Table 33: Visualization Properties Structure

XAXIS_PROPERTIES, YAXIS_PROPERTIES,
ZAXIS_PROPERTIES

Set these keywords equal to a scalar or vector of structures defining the axis
properties to usein creating the style. (Use a vector to specify property structures for
successive axes of the same direction have different properties. The structures are
used in around-robin fashion.) Not all properties need be specified (see
BASE_STYLE). The user need only define the fields of the structure they wish to be

LIVE_STYLE Obsolete IDL Features

Obsolete Routines 123

different from the BASE style. The complete structure definition is shown in the
following table.

Tag Data Type
color string (see color table)
default_major integer
default._minor integer
exact boolean
gridstyle integer (0-5) (linestyle)
hide boolean
location 3-element floating vector (normalized units)
major integer (default=-1, computed by IDL)
minor integer (default=-1, computed by IDL)
thick integer (1-10)
tickDir integer
tickLen float (normalized units)
tick_fontname string
tick_fontsize integer

Table 34: Axis Properties Structure

Examples

Styl e=LI VE_STYLE(' pl ot', BASE_STYLE=' basic plot', $

GRAPHI C_PROPERTI ES={col or: ' red'})
Version History
Introduced: 5.1
See Also

LIVE_INFO, LIVE_CONTROL

Obsolete IDL Features LIVE_STYLE

124 Obsolete Routines

LIVE_SURFACE

The LIVE_SURFACE procedure creates an interactive plotting environment for
multiple surfaces. Because the interactive environment requires extra system
resources, thisroutine is most suitable for relatively small data sets. If you find that
performance does not meet your expectations, consider using the Direct Graphics
SURFACE routine or the Object Graphics IDLgrSurface class directly.

After LIVE_SURFACE has been executed, you can double-click on a section of the
surfaceto display a properties dialog. A set of buttons in the upper left corner of the
image window allows you to print, undo the last operation, redo the last “undone”
operation, copy, draw aline, draw arectangle, or add text.

(S [[Eel [~ [T A

AAA AR XX

Print Undo Redo Copy Line Rectangle Text

Figure 4: LIVE_SURFACE Properties Dialog

You can control your LI1VE window after it is created using any of several auxiliary
routines. See “LIVE_Tools" on page 55 for an explanation.

Syntax

LIVE_SURFACE, Data, Data2,... [, /BUFFER] [, DIMENSIONS=[width,

height]{ normal units}] [, /DOUBLE] [, DRAW_DIMENSIONS=[width,

height]{ devive units}] [, ERROR=variable] [, INDEXED_COLOR]

[, INSTANCING={-1|0] 1}] [, LOCATION=[x, y]{ normal units}]

[, MANAGE_STYLE] [, NAME=structure] [, /NO_DRAW] [, /NO_SELECTION]
[,/NO_STATUS] [, /NO_TOOLBAR] [, PARENT_BASE=widget_id |,
TLB_LOCATION=[Xoffset, Yoffset]{ device units}]

[, PREFERENCE_FILE=filename{full path}] [, REFERENCE_OUT=variable]

[, RENDERER={0| 1}] [, REPLACE={structure | {0 |1|2|3|4}}]

[, STYLE=name or_reference] [, TEMPLATE_FILE=filename] [, TITLE=string]
[, WINDOW_IN=string] [, { X | Y}INDEPENDENT=vector] [, {/X [/Y}LOG] [, {X
| Y}RANGE=[min, max]{data units}] [, {X | Y} _TICKNAME=array]

LIVE_SURFACE Obsolete IDL Features

Obsolete Routines 125

Arguments

Data

A vector of data. Up to 25 of these arguments may be specified. If any of the datais
stored in IDL variables of type DOUBLE, LIVE_SURFACE uses double-precision to
store the data and to draw the resullt.

Keywords
BUFFER

Set this keyword to bypass the creation of a L1V E window and send the visualization
to an offscreen buffer. The WINDOW field of the reference structure returned by the
REFERENCE_OUT keyword will contain the name of the buffer.

DIMENSIONS

Set this keyword to a two-element, floating-point vector of the form [width, height]
specifying the dimensions of the visualization in normalized coordinates. The default
is[1.0, 1.0].

DOUBLE

Set this keyword to force LIVE_SURFACE to use double-precision to draw the
result. This has the same effect as specifying datain the Data argument using IDL
variables of type DOUBLE.

DRAW_DIMENSIONS

Set thiskeyword equal to avector of the form [width, height] representing the desired
size of the LIVE tools draw widget (in pixels). The default is [452, 452].

Note
This default value may be different depending on previous template projects.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By defaullt,
errors are reported viaa GUI.

Obsolete IDL Features LIVE_SURFACE

126 Obsolete Routines

Note
If anamed variable is passed in this keyword and an error occurs, the error GUI will
not be displayed.

INDEXED_COLOR

If set, the indexed color mode will be used. The default is TrueColor. (See Using IDL
for more information on color modes.)

INSTANCING

Set this keyword to 1 to instance drawing on, or 0 to turn it off. The default (-1) isto
useinstancing if and only if the “ software renderer” is being used (see RENDERER).
For more information, see “Instancing” in the Objects and Object Graphics manual.

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.0, 0.0].

Note
LOCATION may be adjusted to take into account window decorations.

MANAGE_STYLE

Set this keyword to have the passed in style item destroyed when the LIVE tool
window is destroyed. This keyword will have no effect if the STYLE keyword is not
set to astyleitem.

NAME

Set this keyword to a structure containing suggested names for the dataitems to be
created for thisvisualization. See the REPLACE keyword for details on how they will
be used. The fields of the structure are as follows. (Any or al of the tags may be set.)

Tag Description
DATA Dependent Data Name(s)
IX Independent X Data Name

Table 35: Fields of the NAME keyword

LIVE_SURFACE Obsolete IDL Features

Obsolete Routines 127

Tag Description

Y Independent Y Data Name

Table 35: Fields of the NAME keyword (Continued)

The default for afield isto use the given variable name. If the variable does not have
aname (i.e., is an expression), a default name is automatically generated. The
dependent data names will be used in around-robin fashion if more data than names
areinput.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display

NO_STATUS

Set this keyword to prevent the creation of the status bar.
NO_TOOLBAR

Set this keyword to prevent the creation of the toolbar.
PARENT_BASE

Set this keyword to the widget ID of an existing base widget to bypass the creation of
aLIVE window and create the visualization within the specified base widget.

Note
The location of the draw widget is not settable. It is expected that the user who
wishestoinsert atool into their own widget application will determine the setting
from the parent base sent to the tool.

Note
LIVE _DESTROY on awindow is recommended when using PARENT_BASE so
that proper memory cleanup is done. Simply destroying the parent base is not
sufficient.

Note
When specifying a PARENT_BASE, that parent base must be running in anon-
blocking mode. Putting a LIVE tool into arealized base already controlled by

Obsolete IDL Features LIVE_SURFACE

128 Obsolete Routines

XMANAGER will override the XMANAGER modeto /NO_BLOCK even if
blocking had been in effect.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the created
items. The fields of the structure are shown in the following table.

Tag Description
WIN Window Name
VIS Visualization Name
GRAPHIC Graphic Name(s)
XAXIS X-Axis Name
YAXIS Y-Axis Name
ZAXIS Z-Axis Name
LEGEND Legend Name
DATA Dependent Data Name(s)
IX Independent X Data Name
Y Independent Y Data Name

Table 36: Fields of the LIVE_SURFACE Reference Structure
RENDERER

Set this keyword to 1 to use the “software renderer”, or O to use the “ hardware
renderer”. The default (-1) isto use the setting in the IDE (IDL Development
Environment) preferences; if the IDE is not running, however, the default is hardware
rendering. For more information, see “Hardware vs. Software Rendering” in the
Objects and Object Graphics manual.

REPLACE

Set this keyword to a structure containing tags as listed for the NAME keyword, with
scalar values corresponding to the replacement options listed below. (Any or all of the
tags may be set.) The replacement settings are used to determine what action to take

LIVE_SURFACE Obsolete IDL Features

Obsolete Routines 129

when an item (such as data) being input would have the same name as one aready
existing in the given window or buffer (WINDOW _IN).

Setting Action Taken

0 New itemswill be given unique names.

1 Existing items will be replaced by new items (i.e., the old items will be
deleted and new ones created).

2 User will be prompted for the action to take.

3 The values of existing items will be replaced. Thiswill cause dynamic

updating to occur for any current uses, e.g., avisualization would
redraw to show the new value.

4 Default. Option 0 will be used for items that do not have names (e.g.,
datainput as an expression rather than a named variable, with no name
provided viathe NAME keyword). Option 3 will be used for all named
items.

Table 37: REPLACE keyword Settings and Action Taken

STYLE

Set this keyword to either a string specifying a style name created with
LIVE_STYLE.

TITLE

Set this keyword to a string specifying the title to give the main window. It must not
already be in use. A default will be chosen if no title is specified.

TLB_LOCATION

Set this keyword to atwo-element vector of the form [Xoffset, Yoffset] specifying the
offset (in pixels) of the LIVE window from the upper left corner of the screen. This
keyword has no effect if the PARENT_BASE keyword is set. The default is[0, 0].

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of aLIVE tool window or a
LIVE tool buffer, in which to display the visualization. The WIN tag of the
REFERENCE_OUT structure from the creation of the LIVE tool will provide the

Obsolete IDL Features LIVE_SURFACE

130

Obsolete Routines

window or buffer name. Window names are also visible in visualization window
titlebars. The default is to create a new window.

XINDEPENDENT

Set this keyword to a vector specifying X valuesfor LIVE_SURFACE. Thedefaultis
the data's index values.

Note
Only one independent vector is allowed; all dependent vectors will use the
independent vector.

YINDEPENDENT

Set this keyword to avector specifying Y valuesfor LIVE_SURFACE. Thedefaultis
the data's index values.

Note
Only one independent vector is allowed; all dependent vectors will use the
independent vector.

XLOG

Set this keyword to make the X axisalog axis. The default is O (linear axis).
YLOG

Set this keyword to make the Y axis alog axis. The default is O (linear axis).
XRANGE

Set this keyword equal to atwo-element array that defines the minimum and
maximum values of the X axis range. The default equals the values computed from
the data range.

YRANGE

Set this keyword equal to atwo-element array that defines the minimum and
maximum values of the Y axis range. The default equals the values computed from
the data range.

LIVE_SURFACE Obsolete IDL Features

Obsolete Routines 131

X_TICKNAME

Set this keyword equal to an array of stringsto be used to label thetick mark for the X
axis. The default equal s the values computed from the data range.

Y_TICKNAME

Set this keyword equal to an array of strings to be used to label the tick mark for the
Yaxis. The default equal s the values computed from the data range.

Examples

This example visualizes two surface representations. To manipulate any part of the
surface, double click on surface to access a graphical user interface:

LI VE_SURFACE, tenpData, pressureData
Note
Thisisa“Live’ situation. When data of the same name is used multiple times
within the same window, it always represents the same internal dataitem. For
example, if one does the following:

Y = i ndgen(10)

LI VE_PLOT, Y, W NDOW.IN=w, DI MENSI ONS=d, LOCATI ON=l ocl

Y = indgen(20)

LI VE_PLOT, Y, W NDOW.IN=w, DI MENSI ONS=d, LOCATI ON=Il oc2
Thefirst plot will updateto usethe Y of the second plot when the second plot is
drawn. If the user wantsto display 2 “tweaks’ of the same data, a different variable
name must be used each time, or at least one should be an expression (thus not a
named variable). For example:

LI VE_PLOT, VY1,...
LI VE_PLOT, Y2,...

or;

LI VE_PLOT, Y, ...
LI VE_PLOT, mnyFunc(Y), ...

In last example, the data of the second visualization will be given a default unique
name since an expression rather than a named variable is input.

Note
The above shows the default behavior for naming and replacing data, which can be
overridden using the NAME and REPLACE keywords.

Obsolete IDL Features LIVE_SURFACE

132 Obsolete Routines

Version History
Introduced: 5.0
See Also

SURFACE, SHADE_SURF

LIVE_SURFACE Obsolete IDL Features

Obsolete Routines 133

LIVE_TEXT

The LIVE_TEXT procedureis an interface for text annotation. You can control your
LIVE window after it is created using any of several auxiliary routines. See
“LIVE_Tools” on page 55 for an explanation.

Syntax

LIVE_TEXT[, Text] [, ALIGNMENT=value{ 0.0 to 1.0}] [, COLOR="color name]
[, /DIALOG] [, /ENABLE_FORMATTING] [, ERROR=variable]

[, FONTNAME=string] [, FONTSIZE=points{9 to 72}] [, /HIDE]

[, LOCATION=[x, y]] [, NAME=string] [, /NO_DRAW] [, /NO_SELECTION]

[, REFERENCE_OUT=variable] [, TEXTANGL E=value{ 0.0 to 360.0}]

[, VERTICAL_ALIGNMENT=value{0.0to 1.0}] [, VISUALIZATION_IN=string]
[, WINDOW_IN=string]

Arguments

Text

The string to be used for the text annotation. The default is“Text”. If Text isan array
of strings, each element of the string array will appear on a separate line.

Keywords
ALIGNMENT

Set this keyword to a floating-point value between 0.0 and 1.0 to indicate the
horizontal alignment of the text. The alignment scheme is as follows:

o S— 0.5--- - 0.0
Left Middle Right
COLOR

Set this keyword to a string (case-sensitive) of the foreground color to be used for the
text. The default is‘Black’. The following colors are available:

* Black * Red * Green * Yellow
* Blue * Magenta ¢ Cyan » Dark Gray

Obsolete IDL Features LIVE_TEXT

Obsolete Routines

134
* Light Gray * Brown * Light Red » Light Green
» Light Blue e Light Cyan » Light Magenta * White
DIALOG

Set this keyword to have the text annotation dialog appear. This dialog will fill in
known attributes from set keywords.

ENABLE_FORMATTING

Set this keyword to have LIVE_TEXT interpret “!” (exclamation mark) as font and
positioning commands.

ERROR

Set this keyword to a named variable to contain the returned error message (string).
An empty string is returned if no errors occurred during the operation. By defaullt,

errors are reported viaa GUI.

Note
If anamed variableis passed in thiskeyword and an error occurs, the error GUI will

not be displayed.

FONTNAME

Set this keyword to a string containing the name of the desired font. The default is
Helvetica.

FONTSIZE

Set this keyword to an integer scalar specifying the font point size to be used. The
default is 12. Available point sizes are 9 through 72.

HIDE
Set this keyword to a boolean value indicating whether this item should be drawn:
e 0= Draw (default)

« 1=Donotdraw

LIVE_TEXT Obsolete IDL Features

Obsolete Routines 135

LOCATION

Set this keyword to a two-element, floating-point vector of the form [X, Y]
specifying the location of the visualization (relative to the lower left hand corner
within the visualization window) in normalized coordinates. The default is[0.5, 0.5].

Note
LOCATION may be adjusted to take into account window decorations.

NAME

Set this keyword equal to a string containing the name to be associated with thisitem.
The name must be unique within the given window or buffer (WINDOW _IN). If not
specified, a unique name will be assigned automatically.

NO_DRAW

Set this keyword to inhibit the visualization window from drawing. Thisis useful if
multiple visualizations and/or annotations are being created via calls to other
LIVE_Toolsin order to reduce unwanted draws and help speed the display.

REFERENCE_OUT

Set this keyword to a variable to return a structure defining the names of the created
items. The fields of the structure are shown in the following table:

Tag Description
WIN Window Name
VIS Visualization Name
GRAPHIC Graphic Name the text created

Table 38: Fields of the LIVE_TEXT Reference Structure

TEXTANGLE

Set this keyword to afloating-point value defining the angle of rotation of the text.
The valid range is from 0.0 to 360.0. The default is 0.0.

Obsolete IDL Features LIVE_TEXT

136

Obsolete Routines

VERTICAL_ALIGNMENT

Set this keyword to afloating-point value between 0.0 and 1.0 to indicate the vertical
alignment of the text baseline. The alignment schemeis asfollows:

0.0 Top
05 Midde

1.0 Bottom

VISUALIZATION_IN

Set this keyword equal to the name (string, case-insensitive) of aLI1VE tool
visualization. The VISfield from the REFERENCE_OUT keyword from the creation
of the LIVE tool will provide the visualization name. If only one visualization is
present in the window or buffer (WINDOW_IN), this keyword will default to it.

WINDOW_IN

Set this keyword equal to a name (string, case-sensitive) of a LIVE tool window or a
LIVE tool buffer. The WIN tag of the REFERENCE_OUT structure from the
creation of the LIVE tool will provide the window or buffer name. Window names are
also visiblein visualization window titlebars. If only one L1VE tool window (or
buffer) is present in the IDL session, this keyword will default to it.

Examples

LI VE_TEXT, 'My Annotation', WNDOWIN='Live Plot 2', $
VI SUALI ZATI ONLI N=' i ne pl ot visualization'

Version History

Introduced: 5.1

See Also

LIVE_TEXT

LIVE_LINE, LIVE_RECT

Obsolete IDL Features

Obsolete Routines 137

LILCT

This routine is obsolete and should not be used in new IDL code.

The LILCT procedure loads standard color tables for LJ-250/252 printer. The color
tables are modified only if the deviceis currently setto “LJ".

The default color maps used are for the 90 dpi color palette. There are only 8 colors
available at 180 dpi.

If the current deviceis‘LJ, the!D.N_COLORS system variable is used to determine
how many bit planes are in use (1 to 4). The standard color map for that number of
planesis loaded. These maps are described in Chapter 7 of the LJ250/LJ252
Companion Color Printer Programmer Reference Manual, Table 7-5. That manual
gives the values scaled from 1 to 100, LJLCT scales them from O to 255.

Thisroutine iswritten in the IDL language. Its source code can be found in thefile
Ijlct.prointheli b subdirectory of the IDL distribution.

Syntax
LILCT

Example

; Set plotting to the LJ device:
SET_PLOT, 'LJ'

Load the LJ color tables:
LJLCT

Obsolete IDL Features LIJLCT

138 Obsolete Routines

PICKFILE

This routine is obsolete and should not be used in new IDL code.

The PICKFILE function has been renamed but retains the same functionality it hadin
previous releases. See DIALOG_PICKFILE inthe IDL Reference Guide.

PICKFILE Obsolete IDL Features

Obsolete Routines 139

POLYFITW

This routine is obsolete and should not be used in new IDL code. To perform a
weighted polynomial fit, use the MEASURE_ERRORS keyword to POLY _FIT.

The POLY FITW function performs a weighted |east-square polynomia fit with
optional error estimates and returns a vector of coefficients with alength of
NDegree+1.

The POLY FITW routine uses matrix inversion. A newer version of this routine,
SVDHIT, uses Singular Value Decomposition. The SVD technique is more flexible,
but slower. Another version of thisroutine, POLY _FIT, performs aleast square fit
without weighting.

Thisroutine iswritten in the IDL language. Its source code can be found in thefile
pol yfitw prointheli b subdirectory of the IDL distribution.

Syntax

Result = POLYFITW(X, Y, Weights, NDegree [, Yfit, Yband, Sgma, Corrm]|
[, /IDOUBLE] [, STATUS=variable])

Arguments

X

An n-element vector of independent variables.
Y

A vector of independent variables, the same length as X.
Weights

A vector of weights, the same length as X and Y.
NDegree

The degree of the polynomial to fit.
Yfit

A named variable that will contain the vector of calculated Y values. These values
have an error of plus or minus Yband.

Obsolete IDL Features POLYFITW

140 Obsolete Routines

Yband

A named variable that will contain the error estimate for each point.
Sigma

A named variable that will contain the standard deviation of the returned coefficients.
Corrm

A named variable that will contain the correlation matrix of the coefficients.
Keywords
DOUBLE

Set this keyword to force computations to be done in double-precision arithmetic.
STATUS

Set this keyword to a named variable to receive the status of the operation. Possible
status values are:

* 0= Successful completion.
* 1=Singular array (which indicatesthat the inversionisinvalid). Result is NaN.

e 2=Warning that asmall pivot element was used and that significant accuracy
was probably lost.

¢ 3 =Undefined (NaN) error estimate was encountered.

Note
If STATUS is not specified, any error messages will be output to the screen.

Tip
Status values of 2 or 3 can often be resolved by setting the DOUBLE keyword.

POLYFITW Obsolete IDL Features

Obsolete Routines 141

REWIND

This routine is obsolete and should not be used in new IDL code.
The REWIND procedure rewinds the tape on the designated IDL tape unit. REWIND

isavailable only under VMS. See the description of the magnetic tape routinesin
“VMS-Specific Information” in Chapter 8 of Building IDL Applications.
Syntax
REWIND, Unit
Arguments
Unit

The magnetic tape unit to rewind. Unit must be a number between 0 and 9, and
should not be confused with standard file Logical Unit Numbers (LUNS).

Obsolete IDL Features REWIND

142 Obsolete Routines

RIEMANN

This routine is obsolete and should not be used in new IDL code. RIEMANN has
been replaced by the RADON function.

The RIEMANN procedure computes the “ Riemann sum” (or itsinverse) which helps
implement the backprojection operator used to reconstruct the cross-section of an
object, given projections through the object from multiple directions. This technique
iswidely used in medical imaging in the fields of computed x-ray tomography, MRI
imaging, Positron Emission Tomography (PET), and a so has applications in other
areas such as seismology and astronomy. The inverse Riemann sum, which evaluates
the projections given a slice through an object, is aso a discrete approximation to the
Radon transform.

Given amatrix A(m,n), which will contain the reconstructed dlice; avector P,
containing the ray sums for a given view; and an angle Theta measured in radians
from the vertical: the Riemann sum “backprojects’ the vector P into A. For each
element of A, the value of the closest element of P issummed, leaving the result in A.
Bilinear interpolation is an option. All operations are performed in single-precision
floating point.

In the reverse operation, the ray sums contained in the view vector, P, are computed
given the original dlice, A, and Theta. Thisis sometimes called “front projection”.

The Riemann sum can be written:
M-1

Z A(r-cos(i-A=0),i-A)
i=0

which isthe sum of the dataalong lines through an image with an angle of thetafrom
the vertical.

Syntax

RIEMANN, P, A, Theta [, /BACKPROJECT] [, /BILINEAR] [, CENTER=value]
[, COR=vector] [, CUBIC=value{-1to 0}] [, D=spacing] [, ROW=valu€]

RIEMANN Obsolete IDL Features

Obsolete Routines 143

Arguments
P

A k-element floating-point projection vector (or matrix if the ROW keyword is
specified). For backprojection (when the BACKPROJECT keyword is set), P
contains the ray sumsfor asingle view. For the inverse operation, P should contain
zeros on input and will contain the ray sums for the view on output.

A

An m by n floating-point image matrix. For backprojection, A contains the
accumulated results. For the inverse operation, A contains the original image.
Typically, k should be larger than

Jm? +n?
which isthe diagonal size of A.
Theta
The angle of the ray sums from the vertical.

Keywords

BACKPROJECT

Set this keyword to perform backprojection in which P is summed into A. If this

keyword is not set, the inverse operation occurs and the ray sums are accumulated
into P.

BILINEAR

Set this keyword to use bilinear interpolation rather than the default nearest neighbor
sampling. Results are more accurate but slower when bilinear interpolation is used.
CENTER

Set this keyword equal to a floating-point number specifying the center of the
projection. The default value for CENTER is one-half the number of elements of P.

Obsolete IDL Features RIEMANN

144 Obsolete Routines

COR

Set this keyword equal to atwo-element floating-point vector specifying the center of
rotation in the array A. The default valueis[nV2., n/2.], where Aisan mby n array.

For symmetric results, given symmetric operands, COR should be set to the origin of
symmetry [(m-1)/2, (n-1)/2], and CENTER should be set to (n-1)/2., where nisthe
number of elements in the projection vector, P.

CuBIC

Set this keyword to a value between -1 and 0 to use the cubic convolution
interpolation method with the specified value as the interpolation parameter. Setting
this keyword equal to avalue greater than zero specifies avalue of -1 for the
interpolation parameter. Park and Schowengerdt (see reference below) suggest that a
value of -0.5 significantly improves the reconstruction properties of this algorithm.

Cubic convolution is an interpolation method that closely approximates the
theoretically optimum sinc interpolation function using cubic polynomials.
According to sampling theory, details of which are beyond the scope of this
document, if the original signal, f, is aband-limited signal, with no frequency
component larger than mq, and f is sampled with spacing less than or equal to /2w,
then f can be reconstructed by convolving with asinc function: sinc (x) = sin (nx) /

().

In the one-dimensional case, four neighboring points are used, while in the two-
dimensional case 16 points are used. Note that cubic convolution interpolation is
significantly slower than bilinear interpolation.

For further details see;

Rifman, S.S. and McKinnon, D.M., “Evaluation of Digital Correction Techniquesfor
ERTS Images; Final Report”, Report 20634-6003-TU-00, TRW Systems, Redondo
Beach, CA, July 1974.

S. Park and R. Schowengerdt, 1983 “Image Reconstruction by Parametric Cubic
Convolution”, Computer Vision, Graphics & Image Processing 23, 256.

D

Usethis keyword to specify the spacing between elements of P, expressed in the same
units as the spacing between elements of A. The default is 1.0.

RIEMANN Obsolete IDL Features

Obsolete Routines 145

ROW

Set this keyword to specify the P vector as a given row within a matrix, so that the
sinogram array can be used directly without having to extract or insert each row. In
this case, P must be an array with afirst dimension equal to k, and the value of ROW
must be in the range of 0 to the number of vectors of length k in P, minus one.

Example

This example forms a synthetic image in A, computes Nviews equally spaced views,
and stores the stacked projections (commonly called the “sinogram”) in a matrix PP,
It then backprojects the projections into the matrix B, forming the reconstructed slice.
In practical use, the projections are convolved with afilter before being
backprojected.

; Define nunber of colums in A
N = 100L

Defi ne nunber of rows in A
M = 100L
;. Nunber of views:
nviews = 100

; The length of the longest projection. If filtered backprojection
; is used, 1/2 the length of the convol ution kernel nust also be
; added.

K = CEIL(SQRT(N*2 + M2))

; Formoriginal slice:
A = FLTARR(N, M

; Sinmulate a square object:
AN 2:N2+5, M2:M2+5] = 1.0

; Make array for sinogram
pp = FLTARR(K, nviews)

; Conpute each view
FOR 1=0, NVIEWS-1 DO RIEMANN, pp, A | * !Pl/nviews, ROMI

; Show si nogram
TVSCL, pp

; Initial reconstructed inmage:
B = FLTARR(N, M

Obsolete IDL Features RIEMANN

146 Obsolete Routines

; Do the backprojection for each view
FOR I =0, nviews-1 DO $
RIEMANN, pp, B, I * I'PI/nviews, /BACKPRQIECT, ROMi

; Show reconstructed array:
TVSCL, B

RIEMANN Obsolete IDL Features

Obsolete Routines 147

RSTRPOS

This routine is obsolete and should not be used in new IDL code.

The RSTRPOS function has been replaced by the STRPOS function’s
REVERSE_SEARCH keyword. See “STRPOS’ in the IDL Reference Guide manual.

The RSTRPOS function finds the last occurrence of a substring within an object
string (the STRPOS function finds the first occurrence of asubstring). If the substring
isfound in the expression, RSTRPOS returns the character position of the match,
otherwise it returns -1.

Syntax
Result = RSTRPOS(Expression, Search_String [, Pog])
Arguments
Expression

The expression string in which to search for the substring.
Search_String
The substring to be searched for within Expression.

Pos

The character position before which the search is begun. If Posis omitted, the search
begins at the last character of Expression.

Example

; Define the expression:

exp = 'Holy snokes, Batman!'

; Find the position of a substring:
pos = RSTRPOS(exp, 'snokes')

; Print the substring’s position:
PRI NT, pos

IDL prints:
5

Obsolete IDL Features RSTRPOS

148 Obsolete Routines

Note
Substring begins at position 5 (the sixth character).

RSTRPOS Obsolete IDL Features

Obsolete Routines 149

SET _SYMBOL

This routine is obsolete and should not be used in new IDL code.

The SET_SYMBOL procedure definesa DCL (Digital Command Language)
interpreter symbol for the current process. SET_SYMBOL is available only under

VMS.
Syntax

SET_SYMBOL, Name, Value[, TYPE={1]2}]
Arguments

Name
A scalar string containing the name of the symbol to be defined.

Value
A scalar string containing the value with which Name is defined.

Keywords

TYPE

Indicates the table into which Name will be defined. Setting TY PE to 1 specifies the
local symbol table, while avalue of 2 specifiesthe global symbol table. The default is
the local table.

Obsolete IDL Features SET_SYMBOL

150 Obsolete Routines

SETLOG

This routine is obsolete and should not be used in new IDL code.
The SETLOG procedure defines alogical name.

Note
This procedure is only available for the VMS platform.

Syntax

SETLOG, Lognam, Value [, /CONCEALED] [, /CONFINE] [, /NO_ALIAS]
[, TABLE=string] [, /TERMINAL]

Arguments

Lognam
A scalar string containing the name of the logical to be defined.
Value

A string containing the value to which the logical will be set. If Valueisastring array,
Lognamis defined as a multi-valued logical where each element of Value defines one
of the equivalence strings.

Keywords

CONCEALED

If this keyword is set, RMS (VM S Record Management Services) interprets the
equivalence name as a device name.

CONFINE

If this keyword is set, the logical name is not copied from the IDL processto its
spawned subprocesses.

NO_ALIAS

If thiskeyword is set, the logical name cannot be duplicated in the same logical table
at an outer access mode. If another logical name with the same name already exists at

SETLOG Obsolete IDL Features

Obsolete Routines 151

an outer access mode, it is deleted. See the VMS System Services Manual for
additional information on logical names and access modes.

TABLE

A scalar string containing the name of the logical table into which Lognamwill be
entered. If TABLE is not specified, LNM$PROCESS_TABLE is used.

TERMINAL

If thiskeyword is set, when attempting to translate the logical, further iterative logical
name tranglation on the equivalence name is not to be performed.

Obsolete IDL Features SETLOG

152 Obsolete Routines

SIZE Executive Command

This command is obsolete and is should not be used in new IDL code.
.SIZE Code_Size, Data_Size

The. SI ZE command resizes the memory areaused to compile programs. The default
code and data area sizes are 32,768 and 8,192 bytes, respectively. These sizes
represent a compromise between an unlimited program space and conservation of
memory. User procedures and functions are compiled in this large program area.
After successful compilation, a new memory area of the required size is allocated to
contain the newly compiled program unit.

Resizing the code and data areas erases the currently compiled main program and all
main program variables. For example, to extend the code and data areas to 30,000 and
5,000 bytes, respectively, use the following statement:

. SI ZE 30000 5000

Each user-defined procedure, function, and main program hasits own code area that
contains the compiled code and constants. Although the maximum size of these areas
isset by the. SI ZE command, thereis virtually no limit to the number of program
units. Procedures or functions that run out of code area space should be broken into
multiple program units.

The data area contains information describing the user-defined variables and common
blocksfor each procedure, function, or main program. Note that the “data area’ is not
the space available for variable storage, but the space available for that program unit’s
symboal table.

Warning
Users are sometimes confused about the nature of the code and data areas. Note that
there are separate code and data areas for each compiled function, routine, or main
program. The HEL P command can be used to see the current sizes of the code and
data areas for the program unit in which the HELP function is called.

For example, to see the sizes of the code and data areas for the main program level,
enter the following at the IDL prompt:

HELP

Each compiled function and procedure has its own code and data aress. If the
compiled routine does not use the full amount of code space allocated by the default

SIZE Executive Command Obsolete IDL Features

Obsolete Routines 153

code area size, the code area “ shrinks’ to just the size the routine needs. For example,
enter and compile a simple procedure from the IDL prompt by entering:

. RUN

- PRO EXAMPLE

- PRINT, "Here are the code and data areas for this procedure:"
- HELP

- END

Call the EXAMPLE procedure from the command line to see the result:
EXAMPLE

The third line of output from the HEL P procedure displays:
Code area used: 100.00% (100/100), Data area used: 2.02% (2/99)

Note that the code areafor the EXAMPLE procedure is completely filled and that the
total size of the code areaiisjust 100 bytes.

Obsolete IDL Features SIZE Executive Command

154 Obsolete Routines

SKIPF

This routine is obsolete and should not be used in new IDL code.

The SKIPF procedure skips records or files on the designated magnetic tape unit.
SKIPF isavailable only under VMS. If two parameters are supplied, files are skipped.
If three parameters are present, individua records are skipped.

The number of files or records actually skipped is stored in the system variable ! ERR.
Note that when skipping records, the operation terminates immediately when the end
of afileisencountered. See the description of the magnetic tape routinesin “VMS-
Specific Information” in Chapter 8 of Building IDL Applications.

Syntax

SKIPF, Unit, Files
or
SKIPF, Unit, Records, R

Arguments
Unit

The magnetic tape unit to rewind. Unit must be a number between 0 and 9, and
should not be confused with the standard file Logical Unit Numbers (LUNS).

Files

The number of filesto be skipped. Skipping isin the forward direction if the second
parameter is positive, otherwise files are skipped backwards.

Records

The number of records to be skipped. Skipping isin the forward direction if the
second parameter is positive, otherwise records are skipped backwards.

R

If thisargument is present, records are skipped, otherwisefiles are skipped. The value
of Ris never examined. Its presence serves only to indicate that records are to be
skipped.

SKIPF Obsolete IDL Features

Obsolete Routines 155

SLICER

This routine is obsolete and should not be used in new IDL code.

The IDL SLICER is awidget-based application to show 3D volume slices and
isosurfaces. On exit, the Z-buffer contains the most recent image generated by the
SLICER. Theimage may be redisplayed on a different device by reading the Z-buffer
contents plus the current color table. Note that the volume data must fit in memory.

Using the SLICER

Datais passed to the SLICER viathe common block VOLUME_DATA. Note that the
variable used to contain the volume data must be defined as part of the common block
before the volume data is read into the variable. (See the Example section, below.)

The SLICER has the following modes:

« Slices: Displays or removes orthogonal or obligque dlices through the data
volume.

* Block: Displaysthe surfaces of a selected block inside the volume.

¢ Cutout: Cuts blocks from previously drawn objects.

» Isosurface: Draws an isosurface contour.

« Probe: Displays the position and value of objects using the mouse.

e Colors: Manipulates the color tables and contrast.

* Rotations: Sets the orientation of the display.

¢ Journal: Records or plays back files of SLICER commands.
See the SLICER’s help file (available by clicking the “Help” button on the SLICER
widget) for more information about drawing slices and images.

Syntax

COMMON VOLUME_DATA, A
A =your_volume_data
SLICER

Obsolete IDL Features SLICER

156

Obsolete Routines

Arguments

A

A 3D array containing volume data. Note that the variable A must be included in the
common block VOLUME_DATA before being equated with the volume data. Aisnot
an explicit argument to SLICER.

Keywords

CMD_FILE

Set this keyword to a string that contains the name of afile containing SLICER
commands to execute as described under SLICER Commands, below. The file should
contain one command per line.

Command files can be created interactively, using the SLICER’s “ Journal” feature.

COMMAND

Set this keyword equal to a1l x n string array contai ning commands to be executed by
the SLICER before entering interactive mode. Available commands are described
under SLICER Commands, below.

Note that commands passed to the SLICER with the COMMAND keyword must be
inalx narray, rather than in an n-element vector. String arrays can be easily
specified in the proper format using the TRANSPOSE command. For example, the
following passes three commands to the slicer:

COMFTRANSPOSE([' COLOR 5, ' TRANS 1 20', '1SO 17 1'])
SLI CER, COVMAND=com
DETACHED

Set this keyword to put the drawable in a separate window. This can be useful when
working with large images.

GROUP

Set this keyword to the widget ID of the widget that calls SLICER. When GROUP s
specified, acommand to destroy the calling widget also destroys the SLICER.

SLICER Obsolete IDL Features

Obsolete Routines 157

NO_BLOCK

Set this keyword equal to zero to have XMANAGER block when this application is
registered. By default, NO_BLOCK is set equal to one, providing access to the
command line if active command line processing is available. Setting
NO_BLOCK=0 will cause all widget applications to block, not just this application.
For more information, see the documentation for the NO_BLOCK keyword to
XMANAGER.

RANGE

Set this keyword to atwo-element array containing minimum and maximum data
values of interest. If RANGE is omitted, the data is scanned for the minimum and
maximum values.

RESOLUTION

Set this keyword to atwo-element vector specifying the width and height of the
drawing window. The default is 55% by 44% of the screen width.

SLICER Commands

The dlicer accepts a number of commands that replicate the action of controlsin the
graphical user interface. These commands can be specified at the IDL command line
using either CMD_FILE keyword or the COMMAND keyword. Files of SLICER
commands can also be created and played back from within the SLICER, using the
“Journal” feature.

Commands, in this context, are strings that include a command identifier and (in
some cases) one or more numeric parameters separated by blanks. The following are
the available SLICER commands, with parameters.

COLOR Table_Index Low High Shading

Set the color tables. Table Index is the pre-defined color table number (see
LOADCT), or -1 to retain the present table. Low isthe contrast minimum, Highisthe
contrast maximum, and Shading is the differential shading, all expressed in percent.
For example, the following command picks color table number 2, sets the minimum
contrast to 10%, the maximum contrast to 90%, and the differential shading to 50%:

COLOR 2 10 90 50

Obsolete IDL Features SLICER

158 Obsolete Routines

CUBE Mode Cut_Ovr Interp X0 Y0 Z0 X1 Y1 Z1

Definesthe volume used for “Block” and “Cutout” operations. Set Mode=1 for Block
mode or Mode=2 for Cutout mode. Set Cut_Owvr=0 to mimic selecting the “ Cut Into”
button or Cut_Ovr=1 to mimic selecting the “ Cut Over” button.

Note
These buttons have no effect in Block mode. See the online help on SLICER for
further explanation of Cut Into and Cut Over.

Set Interp=1 for bilinear interpolation sampling or Interp=0 for nearest neighbor
sampling.

X0,Y0,Z0 are the coordinates of the lower corner of the volume, and X1,Y1,Z1 are the
coordinates of the upper corner. For example:
CUBE 1 0 1 20 0 56 60 75 42
selects Block mode, the “Cut Into” button, bilinear interpolation and defines the
volume's corners at (20, 0, 56) and (60, 75, 42).
ERASE

Erases the display. Mimics clicking on the “ Erase” button.
ISO Threshold Hi_Lo

Draws an iso-surface. Threshold is the isosurface threshold value. Set Hi_Lo equal to
1 to view the low side, or equal to O to view the high side.

ORI X_Axis Y_Axis Z_axis X_Rev Y_Rev Z_Rev X_Rot Z_Rot Asp

Sets the orientation for the SLICER display, mimicking the action of the
“Orientation” button. Set X_Axis, Y_Axis, and Z Axisto 0, 1, or 2, where O represents
thedata X axis, 1thedataY axis, and 2 the dataZ axis. Set X_Rev, Y_Rev, and Z_Rev
to O for normal orientation or to 1 for reversed. Set X Rot and Z_Rot to the desired
rotations of the X and Z axes, in degrees (30 is the default). Set Asp to the desired Z
axis aspect ratio with respect to X and Y. For example, to interchange the X and Z
axes and reverse the Y use the string:

ORIl 21 0010230301
SLICE Axis Value Interp Expose 0

Draws an orthogonal slice. Set Axisto 0 to draw adlice parallel to the X axis, to 1 for
the Y axis, or to 2 for the Z axis. Set Value to the pixel value of the dlice. Set Interp=1

SLICER Obsolete IDL Features

Obsolete Routines 159

for bilinear interpolation sampling or Interp=0 for nearest neighbor sampling. Set
Expose=1 to cut out of an existing image (mimicking the “Expose” button) or set
Expose=0 to draw the slice on top of the current display (mimicking the “Draw”
button). The final zero indicates that the slice is orthogonal rather than oblique. For
example, the following command draws an orthogonal slice parallel to the X axis, at
the pixel value 31, using bilinear interpolation.

SLICE0 31100
SLICE Azimuth Elev Interp Expose 1 X0 YO Z0

Draws an oblique slice. The oblique plane crosses the XY plane at angle Azimuth,
with an elevation of Elev. Set Interp=1 for bilinear interpolation sampling or Interp=0
for nearest neighbor sampling. Set Expose=1 to cut out of an existing image
(mimicking the “Expose” button) or set Expose=0 to draw the slice on top of the
current display (mimicking the “Draw” button). The one indicates that the dliceis
oblique rather than orthogonal. The plane passes through the point (X0, YO, Z0). For
example, the following command exposes an oblique slice with an azimuth of 42 and
an elevation of 24, using bilinear interpolation. The plane passes through the point
(52, 57, 39).

SLICE 42 24 1 1 1 52 57 39

TRANS on_Off Threshold

Turnstransparency on or off and sets the transparency threshold value. Set On_Off=1
to turn transparency on, On_Off=0 to turn transparency off. Threshold is expressed in
percent of data range (0 = minimum data value, 100 = maximum data value). For
example, this command turns transparency on and sets the threshold at 20 percent:

TRANS 1 20
UNDO

Undoes the previous operation.
WAIT Secs

Causes the SLICER to pause for the specified time, in seconds.

Example

Dataistransferred to the SLICER viathe VOLUME_DATA common block instead
of as an argument. Thistechnique is used because volume datasets can be very large

Obsolete IDL Features SLICER

160

SLICER

Obsolete Routines

and the duplication that occurs when passing values as arguments is a waste of
memory.

Suppose that you want to read some datafrom thefile head. dat , whichisincludedin
the IDL examples directory, into IDL for use in the SLICER. Before you read the
data, establish the VOLUME_DATA common block with the following command:

COVMON VOLUME_DATA, VOL

The VOLUME_DATA common block hasjust one variableinit. (The variable can
have any name; here, we're using the name vaL.) Now read the data from the fileinto
voL. For example:

OPENR, UNIT, /GET, FILEPATH(' head. dat', SUBDI RECTORY=['exanples',
‘data'])

VOL = BYTARR(80, 100, 57, /NOZERO

READU, UNIT, VCOL

CLOSE, UNIT

Now you can run the SLICER widget application by entering:

SLI CER
The data stored in VOL is the data being worked on by the SLICER.
To obtain the image in the dlicer window after slicer is finished:

SET_PLOT, ' Z' Usethe Z buffer graphics device.
A = TVRD() Read theimage.

Obsolete IDL Features

Obsolete Routines 161

STR_SEP

This routine is obsolete and should not be used in new IDL code.

The STR_SEP function has been replaced by STRSPLIT for single character
delimiters, and STRSPLIT with the REGEX keyword set for longer delimiters. See
“STRSPLIT” in the IDL Reference Guide manual.

The STR_SEP function divides a string into pieces as designated by a separator
string. STR_SEP returns a string array where each element is a separated piece of the
original string.

Syntax
Result = STR_SEP(Str, Separator [, /TRIM] [, /REMOVE_ALL] [,/ESC])
Arguments

Str
The string to be separated.
Separator

The separator string.
Keywords
TRIM

Set this keyword to remove leading and trailing blanks from each element of the
returned string array. TRIM performs STRTRIM(String, 2).

REMOVE_ALL

Set this keyword to remove al blanks from each element of the returned string array.
REMOVE_ALL performs STRCOMPRESS(Sring, /REMOVE_ALL)

ESC

Set this keyword to interpret the characters following the <ESC> character literally
and not as separators. For example, if the separator is a comma and the escape

Obsolete IDL Features STR_SEP

162 Obsolete Routines

character is a backslash, the character sequence “a\,b” isinterpreted asasingle field
containing the characters“a,b”.

Example

; Create a string:
str = 'Doug.is. a.cool.dude!’

; Separate the parts between the periods:
parts = STR _SEP(str, '.")

; Confirmthat the string has been broken up into 5 el enents:
HELP, parts

PRI NT, parts[3]
IDL Output

PARTS STRING = Array[5]
cool

STR_SEP Obsolete IDL Features

Obsolete Routines 163

TAPRD

This routine is obsolete and should not be used in new IDL code.

The TAPRD procedure reads the next record on the selected tape unit into the
specified array. TAPRD is available only under VMS. No data or format conversion,
with the exception of optional byte reversal, is performed. The array must be defined
with the desired type and dimensions. If the read is successful, the system variable
IERR is set to the number of bytes read. See the description of the magnetic tape
routinesin “VMS-Specific Information” in Chapter 8 of Building IDL Applications.

Syntax
TAPRD, Array, Unit [, Byte Reverse]
Arguments
Unit

The magnetic tape unit to read. This argument must be a number between 0 and 9,
and should not be confused with standard file Logical Unit Numbers (LUN’S).

Array

A named variable into which the dataisread. If Array is larger than the tape record,
the extra elements of the array are not changed. If the array is shorter than the tape
record, a data overrun error occurs. The length of Array and the records on the tape
can range from 14 bytes to 65,235 bytes.

Byte_Reverse

If this parameter is present, the even and odd numbered bytes are swapped after
reading, regardless of the type of data or variables. This enables reading tapes
containing short integers that were written on machines with different byte ordering.
You can also use the BY TORDER routine to re-order different data types.

Obsolete IDL Features TAPRD

164 Obsolete Routines
TAPWRT

This routine is obsolete and should not be used in new IDL code.

The TAPWRT procedure writes data from the Array parameter to the selected tape
unit. TAPWRT is available only under VMS. One physical record containing the
same number of bytes as the array iswritten each time TAPWRT iscalled. The
parameters and usage are identical to those in the TAPRD procedure with the
exception that here the Array parameter can be an expression. Consult the TAPRD
procedure for details. See the description of the magnetic tape routinesin “VMS-
Specific Information” in Chapter 8 of Building IDL Applications.

Syntax
TAPWRT, Array, Unit [, Byte_Reverse]
Arguments
Unit

The magnetic tape unit to write. This argument must be a number between 0 and 9,
and should not be confused with standard file Logical Unit Numbers (LUNS).

Array

The expression representing the data to be output. The length of Array and the
records on the tape can range from 14 bytesto 65,235 bytes.

Byte_Reverse
If this parameter is present, the even and odd numbered bytes are swapped on output,

regardless of the type of data or variables. This enables writing tapes that are
compatible with other machines.

TAPWRT Obsolete IDL Features

Obsolete Routines 165

TIFF_DUMP

This routine is obsolete and should not be used in new IDL code.

The TIFF_DUMP procedure dumps the Image File Directories of a TIFF file directly
to the terminal screen. Each TIFF Image File Directory entry is printed. This
procedure is used mainly for debugging.

Note that not all of the tags have names encoded. In particular, Facsimile, Document
Storage and Retrieval, and most no-longer-recommended fields are not encoded.

Syntax
TIFF_DUMP, File
Arguments
File

A scalar string containing the name of file to read.

Obsolete IDL Features TIFF_DUMP

166 Obsolete Routines

TIFF_READ

This routine is obsolete and should not be used in new IDL code.

The TIFF_READ function has been renamed but retains the same functionality it had
in previous releases. See READ_TIFF in the IDL Reference Guide.

The TIFF_READ function reads 8-bit or 24-bit imagesin TIFF format files (classes
G, B, and R) and returns the image and color table vectorsin the form of IDL
variables. Only one image per fileisread. TIFF_READ returns a byte array
containing the image data. The dimensions of the result are the same as defined in the
TIFF file (Columns, Rows).

For TIFF images that are RGB interleaved by pixel, the output dimensions are (3,
Columns, Rows).

For TIFF imagesthat are RGB interleaved by image, TIFF_READ returns the integer
value zero, sets the variable defined by the PLANARCONFIG keyword to 2, and
returns three separate images in the variabl es defined by the R, G, and B arguments.

Syntax
Result = TIFF_READ(File[, R G, B])
Arguments
File
A scalar string containing the name of file to read.
R,G,B

Named variables that will contain the Red, Green, and Blue color vectors extracted
from TIFF Class P, Palette Color images. For TIFF images that are RGB interleaved
by image (when the variable specified by the PLANARCONFIG keyword is returned
as2) the R, G, and B variables each hold an image with the dimensions (Columns,
Rows).

TIFF_READ Obsolete IDL Features

Obsolete Routines 167

Keywords

ORDER

Set this keyword to a named variable that will contain the order parameter from the
TIFF File. This parameter is returned as O for images written bottom to top, and 1 for
images written top to bottom. If the Orientation parameter does not appear in the
TIFF file, an order of 1 isreturned.

PLANARCONFIG

Set this keyword to a named variable that will contain the interleave parameter from
the TIFF file. This parameter is returned as 1 for TIFF files that are GrayScale,
Palette, or RGB color interleaved by pixel, or as 2 for RGB color TIFF files
interleaved by image.

Example

Read thefileny. tif inthe current directory into the variablei mage, and save the
color tablesin the variables, R, G, and B by entering:

i mge = TIFF_READ('ny.tif', R G B)
To view the image, load the new color table and display the image by entering:

TVLCT, R, G B
TV, inage

Obsolete IDL Features TIFF_READ

168

Obsolete Routines

TIFF_WRITE

This routine is obsolete and should not be used in new IDL code.

The TIFF_WRITE procedure has been renamed but retains the same functionality it
had in previous releases. See WRITE_TIFF in the IDL Reference Guide.

The TIFF_WRITE procedure writes 8- or 24-bit imagesto a TIFF file. Files are
written in asingle strip, or in three strips when the PLANARCONFIG keyword is set
to 2.

Syntax

TIFF_WRITE, File, Array [, Orientation]

Arguments

File

A scalar string containing the name of file to create.

Array

Theimage datato be written. If not already a byte array, it is made abyte array. Array
may be either an (n, m) array for Grayscale or Palette classes, or a (3, n, m) array for
RGB full color, interleaved by image. If the PLANARCONFIG keyword is set to 2
then the Array parameter isignored (and may be omitted).

Orientation

This parameter should be O if theimage is stored from bottom-to-top (the default).
For images stored from top-to-bottom, this parameter should be 1.

Warning: not all TIFF readers are capable of reversing the scan line order. If in doubt,
first convert the image to top-to-bottom order (use the REVERSE function), and set
Orientation to 1.

Keywords

RED, GREEN, BLUE

If you are writing a Class P, Palette color image, set these keywords equal to the color
table vectors, scaled from 0 to 255.

TIFF_WRITE Obsolete IDL Features

Obsolete Routines 169

If you are writing an image that is RGB interleaved by image (i.e., if the
PLANARCONFIG keyword is set to 2), set these keywords to the names of the
variables containing the 3 color component image.

PLANARCONFIG

Set this keyword to 2 if writing an RGB image that is contained in three separate
images (color planes). The three images must be stored in variables specified by the
RED, GREEN, and BLUE keywords. Otherwise, omit this parameter (or set it to 1).

XRESOL
The horizontal resolution, in pixels per inch. The default is 100.
YRESOL

The vertical resolution, in pixels per inch. The default is 100.

Examples

Four types of TIFF files can be written:
TIFF Class G, Grayscale.

Thevariablear r ay containsthe 8-bit image array. A value of 0 isblack, 255 iswhite.
The Red, Green, and Blue keywords are omitted.

TIFFWRITE, '"a.tif', array
TIFF Class P, Palette Color

The variable ar r ay contains the 8-bit image array. The keyword parameters RED,
GREEN, and BLUE contain the color tables, which can have up to 256 elements,
scaled from 0O to 255.

TIFF_WRITE, 'a.tif', array, RED = r, GREEN = g, BLUE = b
TIFF Class R, RGB Full Color, color interleaved by pixel
Thevariablear r ay contains the byte data, and is dimensioned (3, cols, rows).

TIFF_WRITE, 'a.tif', array
TIFF Class R, RGB Full Color, color interleaved by image

Input isthree separate images, provided in the keyword parameters RED, GREEN,
and BLUE. The input argument Array is ignored. The keyword PLANARCONFIG
must be set to 2 in this case.

TIFFWRITE, '"a.tif', RED =r, GREEN = g, BLUE = b, PLAN = 2

Obsolete IDL Features TIFF_WRITE

170 Obsolete Routines

TRNLOG

This routine is obsolete and should not be used in new IDL code.

The TRNLOG function searches the VM S logical name tables for a specified logical
name and returns the equivalence string(s) in an IDL variable. TRNLOG is available
only under VM S. TRNLOG also returns the VM S status code associated with the
trandation asalongword value. Aswith all VM S status codes, successisindicated by
an odd value (least significant bit is set) and failure by an even value.

Syntax

Result = TRNLOG(Lognam, Value[, ACMODE={0|1|2]|3}]
[, /FULL_TRANSLATION] [, /ISSUE_ERROR] [, RESULT_ACMODE=variable]
[, RESULT_TABLE=variable] [, TABLE=string])

Arguments

Lognam
A scalar string containing the name of the logical to be translated.
Value

A named variable into which the equivalence string is placed. If Lognam has more
than one equivalence string, the first oneisused. The FULL_TRANSLATION
keyword can be used to obtain all equivalence strings.

Keywords

ACMODE

Set this keyword to a value specifying the access mode to be used in the trandation.
Valid values are:

e O0=Kernd

¢ 1= Executive
e 2= Supervisor
e 3=Use

When you specify the ACMODE keyword, all names at access modes | ess privileged
than the specified mode are ignored. If you do not specify ACMODE, the translation

TRNLOG Obsolete IDL Features

Obsolete Routines 171

proceeds without regard to access mode. However, the search proceeds from the
outermost (User) to theinnermost (Kernal) maode. Thus, if two logical nameswith the
same name but different access modes exist in the same table, the name with the
outermost access mode is used.

FULL_TRANSLATION

Set this keyword to obtain the full set of equivalence strings for Lognam. By defaullt,
when transl ating a multivalued logical name, Value only receivesthe first equivalence
string as ascalar value. When this keyword is set, Value instead returns a string array.
Each element of this array contains one of the equivalence strings. For example,
under recent versions of VMS, the SY S$SY SROQT logical can have multiple values.
To see these values from within IDL, enter:

; Translate the |ogical:

ret = TRNLOZ(' SYS$SYSROOT', trans, /FULL, /I SSUE_ERROR)
; View the equival ence strings:

PRI NT, trans

ISSUE_ERROR

Set this keyword to issue an error message if the trandlation fails. Normally, no error
isissued and the user must examine the return value to determine if the operation
failed.

RESULT_ACMODE

If present, this keyword specifies anamed variablein which to place the access mode
of the trandlated logical. The access modes are summarized above.

RESULT_TABLE

If present, this keyword specifies a named variable. The name of the logical table
containing the trandated logical is placed in this variable as a scalar string.

TABLE

A scalar string giving the name of the logical tablein which to search for Lognam. If
TABLE isnot specified, the standard VM Slogical tables are searched until amatchis
found, starting with LNM$PROCESS _TABLE and ending with
LNM$SYSTEM_TABLE.

Obsolete IDL Features TRNLOG

172 Obsolete Routines

VAX_FLOAT

Thisroutine is obsolete and should not be used in new IDL code.
The VAX_FLOAT function performs one of two possible actions:

1. Determine, and optionally change, the default value for the VAX_FLOAT
keyword to the OPEN procedures.

2. Determineif an open file unit has the VAX_FLOAT attribute set.
Syntax
Result = VAX_FLOAT([Default] [, FILE_UNIT=lun])
Arguments

Default

Default is used to change the default value of the VAX_FLOAT keyword to the
OPEN procedures. A value of 0 (zero) makes the default for those keywords False. A
non-zero value makes the default True. Specifying Default in conjunction with the
FILE_UNIT keyword will cause an error.

Note
If the FILE_UNIT keyword is not specified, the value returned from VAX_FLOAT
isthe default value before any change is made. Thisisthe case even if Default is
specified. This allows you to get the old setting and change it in a single operation.

Keywords

FILE_UNIT

Set this keyword equal to the logical file unit number (LUN) of an open file.
VAX_FLOAT returns True (1) if the file was opened with the VAX_FL OAT attribute,
or False (0) otherwise. Setting the FILE_UNIT keyword when the Default argument
is specified will cause an error.

Example

To determineif the default VAX_FL OAT keyword value for OPEN is True or False:
default _vax_float = VAX FLQOAT()

VAX_FLOAT Obsolete IDL Features

Obsolete Routines 173

To determine the current default value of the VAX_FLOAT keyword for OPEN and
changeit to True (1) in asingle operation:

ol d_vax_fl oat = VAX_FLOAT(1)

To determine if the file currently open on logical file unit 1 was opened with the
VAX_FLOAT keyword set:

file_ is_vax_float = VAX FLOAT(FILE_UNI T=1)

Obsolete IDL Features VAX_FLOAT

174 Obsolete Routines
WEOF

Thisroutine is obsolete and should not be used in new IDL code.
The WEOF procedure writes an end of file mark, sometimes called atape mark, on
the designated tape unit at the current position. WEOF is available only under VMS.
The tape must be mounted as aforeign volume. See “VM S-Specific Information” in
Chapter 8 of Building IDL Applications.
Syntax
WEOF, Unit
Arguments
Unit
The magnetic tape unit on which the end of file mark iswritten. This argument must

be a number between 0 and 9, and should not be confused with standard file Logical
Unit Numbers (LUNS).

WEOF Obsolete IDL Features

Obsolete Routines 175

WIDED

This routine is obsolete and should not be used in new IDL code.

The WIDED procedure invokes IDL’s graphical user interface designer, known asthe
Widget Builder. Thisfunctionality has been replaced by the GUIBuilder, which is
documented in Building IDL Applications.

Syntax

WIDED

Obsolete IDL Features WIDED

176 Obsolete Routines

WIDGET_MESSAGE

This routine is obsolete and should not be used in new IDL code.

The WIDGET_MESSAGE function has been renamed but retains the same
functionality it had in previous releases. See “DIALOG_MESSAGE” inthe IDL
Reference Guide manual.

WIDGET_MESSAGE Obsolete IDL Features

Chapter 2:

Routines with Obsolete
Keywords

This chapter contains documentation for keywords that have been removed from IDL
routines. New IDL code should not use these keywords. See Appendix I, “ Obsolete
Features’ in the IDL Reference Guide manual for alist of obsolete keywords and their
replacements, if suitable replacements exist.

When IDL attempts to execute a routine called with an obsolete keyword, one of the
following things will happen:

1. Theroutine may function as originally designed, with no change in behavior.
Thisis often the case when the obsolete keyword has been replaced by another
keyword with amore efficient or dightly different mechanism. In these cases,
the obsolete keyword is generally re-implemented within the routine to use the
mechanism of the new keyword, allowing code that uses the obsolete keyword
to run unaltered. Note that although the results will be the same as before the
keyword became obsolete, the code may run more efficiently if the
replacement keyword is used instead of the obsolete keyword.

Obsolete IDL Features 177

178

Chapter 2: Routines with Obsolete Keywords

Example: The GROUP keyword to the DIALOG_PICKFILE routine was
replaced by the DIALOG_PARENT keyword. Code that uses the GROUP
keyword continuesto run as it always did.

The routine may quietly accept the keyword, but ignore its presence. Thisis
the case when the presence of the obsolete keyword does not change the result
returned by the routine. For example, keywords that affected attributes only
available on certain platforms may simply beignored on other platforms. Code
using obsolete keywords of this type can run unaltered.

Example: The MACTY PE keyword to the OPEN routine changed an attribute
of fileson pre-OS X Macintosh filesystems that has no corollary on other
filesystems. IDL simply ignores the presence of this keyword.

The routine may generate an error. Thisis the case when the presence of the
obsol ete keyword changes the result returned by the routine. For example,
keywords that affected the returned datain some way that is no longer
supported must now be removed from IDL code before it will run.

Example: The DTOGFLOAT keyword to the BY TEORDER routine
converted datato aformat only supported under VMS. The underlying
mechanism used is not available in other operating systems, and IDL will
generate an error if such aconversion is specified in the call to BY TEORDER.

Inall cases, if IDL code containing callsto obsolete keywords compiles and runs
without error, the results are the same as they would have been before the keyword
was made obsol ete.

Obsolete IDL Features

Chapter 2: Routines with Obsolete Keywords 179

BYTEORDER

The following keywords to the BY TEORDER procedure are obsol ete.
VMS-Only Keywords
DTOGFLOAT

Set this keyword to convert native (IEEE) double-precision floating-point format to
VAX G float format. Note that IDL does not support the VAX G float format via any
other mechanism.

GFLOATTOD

Set this keyword to convert VAX G float format to native (IEEE) double-precision
floating-point format. Note that IDL does not support the VAX G float format viaany
other mechanism.

Obsolete IDL Features BYTEORDER

180 Chapter 2: Routines with Obsolete Keywords

CALL_EXTERNAL

The following keywords to the CALL_EXTERNAL function are obsol ete.
Keywords

DEFAULT

This keyword isignored on non-VMS platforms. Under VMS, it isastring
containing the default device, directory, file name, and file type information for the
file that contains the sharable image.

PORTABLE

Under VMS, causes CALL_EXTERNAL to usethe IDL Portable calling convention
for passing arguments to the called function instead of the default VMSLIB$SCALLG
convention. Under other operating systems, only the portable convention is available,
so this keyword is quietly ignored.

If you are using the IDL Portable calling convention, the AUTO_GLUE or
WRITE_WRAPPER keywords are available to smplify the task of matching the
form in which IDL passes the arguments to the interface of your target function.

VAX_FLOAT (VMS Only)

If specified, all data passed to the called function isfirst converted to VAX F (single)
or D (double) floating point formats. On return, any data passed by referenceis
converted back to the IEEE format used by IDL. This feature allows you to call code
compiled to work with earlier versions of IDL, which used the old VAX formats.

The default setting for this keyword is FALSE, unless IDL was started with the
VAX_FLOAT startup option, in which case the default is TRUE. See “Command
Line Options’ in Chapter 4 of Using IDL for details on this qualifier. You can change
this setting at runtime using the VAX_FLOAT function.

CALL_EXTERNAL Obsolete IDL Features

Chapter 2: Routines with Obsolete Keywords 181

DEVICE

The following keywords to the DEVICE procedure are obsolete.
Keywords

DEPTH

(V)

The DEPTH keyword specifies the number of significant bitsin a pixel. The LJ250
can support between 1 and 4 significant bits (known also as planes). The number of
available colorsis related to the number of significant planes by the equation:

Colors = 2"planes

Therefore, the LJ250 can support 2, 4, 8, or 16 separate colors on a single page of
output. The default isto use a single plane, producing monochrome output.

Since IDL is based around 8-bit pixels, it is hecessary to define which bitsin a 8-bit
pixel are used by the LJ250 driver, and which are ignored. When using a depth of 1
(monochrome), dithering techniques are used to render images. In this case, al 8 bits
are used. If morethan asingle planeis used, theleast significant n bits of a 8-hit pixel
are used, where n is the selected depth. For example, using a depth of 4, pixel values
of 15, 31, and 47 are al considered to have the value 15 because all three values have
the same binary representation in their 4 least significant digits.

When the depth is changed, the standard color map given in Table 7-5 of the
LJ250/ LJ252 Conpani on Col or Printer Programer Reference Manual IS
automatically loaded. Therefore, color maps should be loaded with TVLCT after
changing the depth.

FONT

(WIN, X)

This keyword is now obsolete and has been replaced by the SET_FONT keyword.
Code that uses the FONT keyword will continue to function as before, but we suggest
that all new code use SET_FONT.

Obsolete IDL Features DEVICE

182 Chapter 2: Routines with Obsolete Keywords

DOC_LIBRARY

The following keywords to the DOC_LIBRARY procedure are obsol ete.
VMS Keywords
FILE

If this keyword is set, the output isleft inthefileuser | i b. doc, in the current
directory.

PATH

A string that describes an optional directory/library search path. This keyword uses
the same format and semantics as | PATH. If omitted, |PATH is used.

OUTPUTS

If this keyword is set, documentation is sent to the standard output unless the PRINT
keyword is set.

DOC_LIBRARY Obsolete IDL Features

Chapter 2: Routines with Obsolete Keywords 183

EXTRACT_SLICE

The following keywords to the EXTRACT_SLICE procedure are obsol ete.
CuBIC

Set this keyword to use cubic interpolation. The default is to use tri-linear
interpolation. If the SAMPLE keyword is set, then the CUBIC keyword isignored.

Obsolete IDL Features EXTRACT_SLICE

184 Chapter 2: Routines with Obsolete Keywords

IDLgrMPEG::Save

The following keywords to the IDLgrM PEG:: Save procedure method are obsol ete.
Keywords
CREATOR_TYPE

Set this keyword to afour character string representing the creator string to be used
when writing thisfile on aMacintosh. This property isignored if the current platform
is not a Macintosh. The default is TVOD (Apple Movie Player application).

IDLgrMPEG::Save Obsolete IDL Features

Chapter 2: Routines with Obsolete Keywords 185

IDLgrVolume::Init

The following keywords to the IDLgrVolume::Init procedure method are obsolete.
Keywords
CUTTING_PLANES (Get, Set)

Set this keyword to afloating-point array with dimensions (4, n) specifying the
coefficients of n cutting planes. The cutting plane coefficients are in the form {{n,,
Ny, Ny, D}, ..} where (n)X+(ny)Y+(n)Z+ D >0, and (X, Y, Z) are the voxel
coordinates. To clear the cutting planes, set this property to any scalar value (e.g.
CUTTING_PLANES = 0). By default, no cutting planes are defined.

Obsolete IDL Features IDLgrVolume::Init

186 Chapter 2: Routines with Obsolete Keywords
LINKIMAGE

The following keywords to the LINKIMAGE procedure are obsol ete.

Keywords
DEFAULT
This keyword isignored on non-VMS platforms. Under VMS, it isastring
containing the default device, directory, file name, and file type information for the

file that contains the sharable image. See “VMS LINKIMAGE and
LIB$SFIND_IMAGE_SYMBOL” on page 1281 for additional information.

LINKIMAGE Obsolete IDL Features

Chapter 2: Routines with Obsolete Keywords 187

LIVE_PRINT

The following keywords to the LIVE_PRINT procedure are obsol ete.
Keywords
SETUP

(Macintosh users only) Set this keyword to have a printer setup dialog appear. This
keyword allows the user to setup the page for printing.

Obsolete IDL Features LIVE_PRINT

188 Chapter 2: Routines with Obsolete Keywords

MAKE_DLL

The following keywords to the MAKE_DLL procedure are obsolete.
VMS-Only Keywords

Thiskeyword isfor VMS platforms only, and is ignored on all other platforms.
VAX_FLOAT

If set, specifies the sharable library to be compiled for VAX F (single) or D (double)
floating point formats. The default isto use the IEEE format used by IDL.

MAKE_DLL Obsolete IDL Features

Chapter 2: Routines with Obsolete Keywords 189

ONLINE_HELP

The following keywords to the three ONLINE_HEL P procedure are obsol ete.
HTML_HELP

Set this keyword to a non-zero value to indicate that the file specified by the BOOK
keyword should be viewed with the HTML Help viewer. Explicitly set this keyword
equal to zero to indicate that the file should be viewed with the traditional Windows
help viewer.

Note
Normally, ONLINE_HELP can properly determine which viewer to use based on
the name of the file, so use of the HTML_HELP keyword is rarely necessary.

Obsolete IDL Features ONLINE_HELP

190 Chapter 2: Routines with Obsolete Keywords

OPEN

The following keywords to the three OPEN procedures are obsol ete.
Macintosh-Only Keywords

MACCREATOR
Use this keyword to specify a four-character scalar string identifying the Macintosh
file creator code of thefile being created. For example, set
MACCREATOR = ' MBWD
to create afile with the creator code MSWD. The default creator codeisM DL.
MACTYPE
Use this keyword to specify a four-character scalar string identifying the Macintosh
file type of the file being created. For example, set
MACTYPE = ' PICT'
to create afile of type PI CT. The default file type is TEXT.

UNIX-Only Keywords

The previous keyword NOSTDIO is now obsolete. It has been renamed RAW O to
reflect the fact that stdio may or may not actually be used. All referencesto
NOSTDIO should be changed to be RAW O, but NOSTDIO will still be accepted asa
synonym for RAMO.

NOSTDIO

Set this keyword to disable all use of the standard UNIX 1/O for thefile, in favor of
direct callsto the operating system. This allows direct access to devices, such as tape
drives, that are difficult or impossible to use effectively through the standard 1/0.
Using this keyword has the following implications:

* No formatted or associated (ASSOC) 1/0 isallowed on thefile. Only READU
and WRITEU are allowed.

¢ Normally, attempting to read more data than is available from afile causes the
unfilled space to be set to zero and an error to be issued. This does not happen
with files opened with NOSTDIO. When using NOSTDI O, the programmer

OPEN Obsolete IDL Features

Chapter 2: Routines with Obsolete Keywords 191

must check the transfer count, either viathe TRANSFER_COUNT keywords
to READU and WRITEU, or the FSTAT function.

e The EOF and POINT_LUN functions cannot be used with afile opened with
NOSTDIO.

* Eachcal to READU or WRITEU maps directly to UNIX read(2) and write(2)
system calls. The programmer must read the UNIX system documentation for
these calls and documentation on the target device to determine if there are any
special rulesfor /0O to that device. For example, the size of datathat can be
transferred to many cartridge tape drivesis often forced to be a multiple of 512
bytes.

VMS-Only Keywords

BLOCK

Set this keyword to process the file using RM S block mode. In this mode, most RMS
processing is bypassed and IDL reads and writes to the file in disk block units. Such
files can only be accessed via unformatted 1/O commands. Block mode files are

treated as an uninterpreted stream of bytesin amanner similar to UNIX stream files.

For best performance, by default IDL uses RM S block mode for fixed length record
files. However, when the SHARED keyword is present, IDL uses standard RMS
mode. Do not specify both BLOCK and SHARED.

This keyword is ignored when used with stream files.

Note
With some controller/disk combinations, RM 'S does not allow transfer of an odd

number of bytes.

DEFAULT

A scalar string that provides a default file specification from which missing parts of
the File argument are taken. For example, to make .LOG be the default file extension
when opening a new file, use the command:

OPENW ' DATA', DEFAULT='.LOG
This statement will open the file DATA.LOG.

Obsolete IDL Features OPEN

192

OPEN

Chapter 2: Routines with Obsolete Keywords

EXTENDSIZE

File extension is arelatively slow operation, and it is desirable to minimize the
number of timesit isdone. In order to avoid the unacceptabl e performance that would
result from extending afileasingle block at atime, VM S extends its size by a default
number of blocksin an attempt to trade a small amount of wasted disk space for
better performance. The EXTENDSIZE keyword overrides the default, and specifies
the number of disk blocks by which the file should be extended. This keyword is
often used in conjunction with the INITIALSIZE and TRUNCATE_ON_CLOSE
keywords.

FIXED

Set thiskeyword to indicate that the file has fixed-length records. The Record_Length
argument is required when opening new, fixed-length files.

FORTRAN

Set this keyword to use FORTRAN-style carriage control when creating a new file.
Thefirst byte of each record controls the formatting.

INITIALSIZE

Theinitial size of thefile allocation in blocks. This keyword is often used in
conjunction with the EXTENDSIZE and TRUNCATE _ON_CL OSE keywords.

KEYED

Set this keyword to indicate that the file has indexed organization. Indexed files are
discussed in “ VM S-Specific Information” in Chapter 8 of Building IDL Applications.

LIST

Set this keyword to specify carriage-return carriage control when creating a new file.
If no carriage-control keyword is specified, LIST isthe default.

NONE

Set this keyword to specify explicit carriage control when creating a new file. When
using explicit carriage control, VM S does not add any carriage control information to
thefile, and the user must explicitly add any desired carriage control to the data being
written to thefile.

Obsolete IDL Features

Chapter 2: Routines with Obsolete Keywords 193

PRINT

Set thiskeyword to send the fileto SY S3PRINT, the default system printer, whenitis
closed.

SEGMENTED

Set this keyword to indicate that the file has VM S FORTRAN-style segmented
records. Segmented records are amethod by which FORTRAN allowslogical records
to exist with record sizes that exceed the maximum possible physical record sizes
supported by VMS. Segmented record files are useful primarily for passing data
between FORTRAN and IDL programs.

SHARED

Set this keyword to allow other processes read and write access to thefile in parallel
with IDL. If SHARED is not set, read-only files are opened for read sharing and
read/write files are not shared. The SHARED keyword cannot be used with
STREAM files.

Warning
Itis not agood ideato allow shared write access to files open in RMS block mode.
In block mode, VMS cannot perform the usual record locking that prevents file
corruption. It istherefore possible for multiple writers to corrupt a block modefile.
Thiswarning aso appliesto fixed-length record disk files, which are a so processed
in block mode. When using SHARED, do not specify either BLOCK or
UDF_BLOCK.

STREAM
Set this keyword to open the file in stream mode using the Standard C Library (stdio).
SUBMIT

Set this keyword to submit the file to SY SSBATCH, the default system batch queue,
when it is closed.

SUPERSEDE

Set this keyword to allow an existing file to be superseded by a new file of the same
name, type, and version.

Obsolete IDL Features OPEN

194 Chapter 2: Routines with Obsolete Keywords

TRUNCATE_ON_CLOSE

Set this keyword to free any unused disk space allocated to the file when thefileis
closed. This keyword can be used to get rid of excess allocations caused by the
EXTENDSIZE and INITIALSIZE keywords. If the SHARED keyword is set, or the
fileis open for read-only access, TRUNCATE_ON_CL OSE has no effect.

UDF_BLOCK

Set this keyword to create a file similar to those created with the BLOCK keyword
except that new files are created with the RM S undefined record type. Files created in
thisway can only be accessed by IDL in block mode, and cannot be processed by
many VMS utilities. Do not specify both UDF_BLOCK and SHARED.

VARIABLE

Set this keyword to indicate that the file has variable-length records. If the
Record_Length argument is present, it specifies the maximum record size. Otherwise,
the only limit isthat imposed by RMS (32767 bytes). If no file organization is
specified, variable-length records are the default.

Warning
VMS variable length records have a 2-byte record-length descriptor at the
beginning of each record. Because the FSTAT function returns the length of the data
fileincluding the record descriptors, reading afile with VM S variable length
records into abyte array of the size returned by FSTAT will result in an RMS EOF
error.

Windows-Only Keywords

The Windows-Only keywords BINARY and NOAUTOMODE are now obsolete.
Input/Output on Windows is now handled indentically to Unix, and does not require
you to be concerned about the difference between “ text” and “ binary” modes. These
keywords are still accepted for backwards compatibility, but are ignored.

BINARY

Set this keyword to treat opened files as binary files. When writing text to a binary
file, CR/LF pairsare written as LF only. Note that setting the BINARY keyword
alone does not ensure that a routine that writes to the file will not change the mode to
text.

OPEN Obsolete IDL Features

Chapter 2: Routines with Obsolete Keywords 195

NOAUTOMODE

Set this keyword to prevent IDL routines such as PRINTF from automatically
changing the mode from binary to text, or vice versa.

Obsolete IDL Features OPEN

196 Chapter 2: Routines with Obsolete Keywords

PRINT/PRINTF

The following keywords to the two PRINT procedures are obsolete.

VMS Keywords
REWRITE

When writing data to a file with indexed organization, set the REWRITE keyword to
specify that the data should update the contents of the most recently input record
instead of creating a new record.

PRINT/PRINTF Obsolete IDL Features

Chapter 2: Routines with Obsolete Keywords 197

READ_TIFF

The following keywords to the READ_TIFF function are obsol ete.
Keywords
ORDER

Set this keyword to a named variable that will contain the order value from the TIFF
file. Thisvalueisreturned as O for images written bottom to top, and 1 for images
written top to bottom. If an order value does not appear in the TIFF file, an order of 1
is returned.

The ORDER keyword can return any of the following additional values (depending
on the source of the TIFFfile):

Rows Columns

1 top to bottom, |eft to right

top to bottom, right to left

bottom to top, right to left

bottom to top, left to right

top to bottom, left to right

top to bottom, right to left

bottom to top, right to left

| N|OoO| 0| | WIN

bottom to top, left to right

Table 39: Values for the ORDER keyword
Reference: Aldus TIFF 6.0 spec (TIFF version 42).
UNSIGNED

This keyword is now obsolete because older versions of IDL did not support the
unsigned 16-bit integer data type. Set this keyword to return TIFF files containing
unsigned 16-bit integers as signed 32-bit longword arrays. If not set, return an
unsigned 16-bit integer for these files. This keyword has no effect if the input file
does not contain 16-bit integers.

Obsolete IDL Features READ_TIFF

198 Chapter 2: Routines with Obsolete Keywords
READ/READF

The following keywords to the READ procedures are obsol ete.
VMS Keywords

Note also that the obsolete VM S-only routine READ_KEY has been replaced by the
keywords bel ow.

KEY_ID

Theindex key to be used (primary = 0, first alternate key = 1, etc...) when accessing
data from afile with indexed organization. If this keyword is omitted, the primary
key isused.

KEY_MATCH

The relation to be used when matching the supplied key with key field values (EQ =
0, GE =1, GT = 2) when accessing data from afile with indexed organization. If this
keyword is omitted, the equality relation (0) is used.

KEY_VALUE
The value of akey to be found when accessing data from afile with indexed
organization. This value must match the key definition that is determined when the

file was created in terms of type and size—no conversions are performed. If this
keyword is omitted, the next sequential record is used.

READ/READF Obsolete IDL Features

Chapter 2: Routines with Obsolete Keywords 199

READU

The following keywords to the READU procedure are obsolete.
VMS-Only Keywords

Note
The obsolete VM S routines FORRD, and FORRD_KEY have been replaced by the
READU command used with the following keywords.

KEY_ID

Theindex key to be used (primary = 0, first alternate key = 1, etc...) when accessing
data from a file with indexed organization. If this keyword is omitted, the primary
key isused.

KEY_MATCH

The relation to be used when matching the supplied key with key field values (EQ =
0, GE =1, GT = 2) when accessing data from afile with indexed organization. If this
keyword is omitted, the equality relation (0) is used.

KEY_VALUE

The value of akey to be found when accessing data from afile with indexed
organization. This value must match the key definition that is determined when the
file was created in terms of type and size—no conversions are performed. If this
keyword is omitted, the previous key value is used.

Obsolete IDL Features READU

200 Chapter 2: Routines with Obsolete Keywords

SAVE

The following keywords to the SAVE procedure are obsol ete.

Keywords
XDR
This keyword is obsolete and will be quietly ignored (there is no need to remove uses

of the XDR keyword from existing code). IDL always generates XDR format files,

although it will continue to read VAX format SAVE files generated by old versions of
VMSIDL.

SAVE Obsolete IDL Features

Chapter 2: Routines with Obsolete Keywords 201

SPAWN

The following keywords to the SPAWN procedure are obsol ete.

Keywords
FORCE

Set thiskeyword to override buffered file output in IDL and force thefile to be closed
no matter what errors occur in the process. If it is not possible to properly flush this
datawhen afile close is requested, an error is normally issued and the file remains
open. An example of this might be that your disk does not have room to write the
remaining data. This default behavior prevents data from being lost, but the FORCE
keyword overrides this behavior.

Macintosh-Only Keywords
MACCREATOR

Use this keyword to specify afour-character scalar string containing the Macintosh
file creator code of the application to be used to open the specified files. In no files
were specified, the application is launched without any files.

VMS-Only Keywords
NOCLISYM

If this keyword is set, the spawned subprocess does not inherit command language
interpreter symbols from its parent process. You can specify this keyword to prevent
commands redefined by symbol assignments from affecting the spawned commands,
or to speed process startup.

NOLOGNAM

If thiskeyword is set, the spawned subprocess does not inherit process logical names
from its parent process. You can specify this keyword to prevent commands redefined

by logical name assignments from affecting the spawned commands, or to speed
process startup.

Obsolete IDL Features SPAWN

202 Chapter 2: Routines with Obsolete Keywords

NOTIFY

If this keyword is set, amessage is broadcast to SY SSOUTPUT when the child
process completes or aborts. NOTIFY has no effect unless NOWAIT is set.

SPAWN Obsolete IDL Features

Chapter 2: Routines with Obsolete Keywords 203

WIDGET_BASE

The following keywords to the WIDGET _BA SE function are obsolete.
Keywords

APP_MBAR

Set this keyword to a named variable that defines awidget application’s menubar. On
the Macintosh, the menubar defined by APP_MBAR becomes the system menubar
(the menubar at the top of the Macintosh screen). On Motif platforms and under
Microsoft Windows, the APP_MBAR istreated in exactly the same fashion as the
menubar created with the MBAR keyword. See“MBAR” on page 2115 for details on
creating menubars.

Warning
You cannot specify both an APP_MBAR and an MBAR for the same top-level base

widget. Doing so will cause an error.

To apply actions triggered by menu items to widgets other than the base that includes
the menubar, use the KBRD_FOCUS_EVENTS keyword to keep track of which
widget has (or last had) the keyboard focus.

Obsolete IDL Features WIDGET_BASE

204 Chapter 2: Routines with Obsolete Keywords

WRITE_TIFF

The following features of the WRITE_TIFF procedure are obsol ete.
Arguments

ORDER

This argument should be 0 if theimage is stored from bottom to top (the default). For
images stored from top to bottom, this argument should be 1.

Warning
Not all TIFF readers honor the value of the Order argument. IDL writes the value
into the file, but many known readers ignore this value. In such cases, we
recommend that you convert the image to top to bottom order with the REVERSE
function and then set Order to 1.

WRITE_TIFF Obsolete IDL Features

Chapter 2: Routines with Obsolete Keywords 205

WRITEU

The following keywords to the WRITEU procedure are obsol ete.
VMS-Only Keywords

Note
The obsolete FORWRT routine has been replaced by WRITEU.

REWRITE

When writing data to a file with indexed organization, setting the REWRITE
keyword specifies that the data should update the contents of the most recently input
record instead of creating a new record.

Obsolete IDL Features WRITEU

206 Chapter 2: Routines with Obsolete Keywords

WRITEU Obsolete IDL Features

Chapter 3:

Obsolete Graphics
Devices

This chapter contains documentation for graphics devices that are no longer
supported by IDL. If you attempt to set IDL’s graphics device to be one of the devices
listed in this chapter viathe SET_PLOT procedure, IDL will generate an error like

% Graphi cs devi ce not avail abl e: device

For information on keywords to the DEVICE procedure that have become obsolete
along with these graphics devices, see the DEVICE section of Chapter 2, “ Routines
with Obsolete Keywords”.

Obsolete IDL Features 207

208 Chapter 3: Obsolete Graphics Devices

The LJ Device

Device Keywords Accepted by the LJ Device:

CLOSE_FILE, DEPTH, FILENAME, FLOYD, INCHES, LANDSCAPE,
ORDERED, PIXELS, PORTRAIT, RESOLUTION, SET_CHARACTER_SIZE,
THRESHOLD, XOFFSET, XSIZE, YOFFSET, Y SIZE.

The LJ250 and LJ252 are color printers sold by Digital Equipment Corporation
(DEC). To direct graphics output to a picture description file compatible with these
printers, issue the command:

SET_PLOT, 'LJ'

This causes IDL to use the LJ driver for producing graphical output. To actualy print
the generated graphics, send the file to the printer using the normal printing facilities
supplied by the operating system. Once the LJ driver is enabled via SET_PLOT, the
DEVICE procedureis used to control its actions, as described below. The default
settings for the LJ driver are given in the following table. Usethe HELP, / DEVI CE
command to view the current font, file, and other options currently set for LJ output.

Feature Value
File idl.lj
Mode Portrait
Dither method Floyd-Steinberg
Resolution 180 dpi
Number of planes 1 (monochrome)
Horizontal offset 12in.
Vertical offset lin.
Width 7in.
Height 5in.

Table 0-1: Default LJ Driver Settings

The LJ Device Obsolete IDL Features

Chapter 3: Obsolete Graphics Devices

LJ Driver Strengths

209

The LJ250 produces color graphics at alow cost. It is capable of producing good
quality monochrome output, and is also good at color vector graphics and simple

color imaging using a small number of predefined solid colors.

LJ Driver Limitations

The LJ250 isintended to be used as alow cost printer for business color graphics.
Although it can be used to print color images, it islimited in its ability to produce
satisfactory images of the sort commonly encountered in science and engineering.
These limitations make it a poor choice for such work.

¢ Although color is specified via the usual RGB triples using the TVLCT
procedure, the LJ250 is only capable of generating afixed set of colors. The
number of possible colors depends on the resolution in use. When producing
180 dpi graphics, only the colors given in the following table are possible. In
90 dpi mode, 256 colors are available.

Color Red Value | Green Value | Blue Value
Black 10 10
Yellow 227 212
Magenta 135 13
Cyan 5 56
Red 135 20
Green 8 66
Blue 10 10
White 229 224

Table 0-2: LJ250 Colors Available at 180 dpi

If acolor is specified that the printer cannot produce, it substitutes the closest
color it can. However, the results of such substitutions can give unexpected
results. The fixed set of possible colors means that the LOADCT procedureis
of limited use with the LJ250. It also meansthat it is difficult to produce
satisfactory grayscale images.

Obsolete IDL Features

The LJ Device

210

Chapter 3: Obsolete Graphics Devices

The number of simultaneous colors possible on an output page is limited.
Although images are specified in 8-bit bytes, the number of significant bits
used ranges from 1 to 4 (as specified viathe DEPTH keyword to the DEVICE
procedure), allowing from 2 to 16 colors. Coupled with the above limitation on
the colors that are possible, it is difficult to produce high quality image output.

LJ Suggestions

The following suggestions are intended to help you get the most out of the LJ250,
taking its limitations into account:

The LJ Device

Use monochrome output when possible. Thisresultsin considerably smaller
output files, and provides most of the abilities the LJ250 handles well. When
producing monochrome output, the LJ250 driver dithersimages. This can
often produce more satisfying grayscal e output than is possible using the
printer in color mode.

The table under “LJ Driver Limitations’ above gives the RGB values to use
when specifying colors at 180 dpi. To make more colors available, use 90 dpi
resolution. The RGB values for the possible colors at 90 dpi are given in Table
7-6 of the L3250/ LJ252 Conpani on Col or Printer Programmer Reference
Manual . You can cause the printer to display the complete 256 color palette as
follows: With the power off, press and hold the READY and DEC/PCL
switches while momentarily pressing the power switch. Wait approximately 2
seconds and release the READY and DEC/PCL switches. The printer will take
afew minutesto print all 256 colors. The output fits on a single page.

Use the table in the programmers manual with this display to select the colors
to use. Note that the RGB valuesin the programmers manual are scaled from 1
to 100, while IDL scales such values from 0 to 255. Therefore, multiply the
values obtained from the manual by 2.55 to properly scalethem for usein IDL.

Unlike most devices, IDL does not initialize the LJ250 color map to a
grayscale ramp because the printer cannot produce a satisfactory grayscale
image. Instead, the default palettes given in Table 7-5 of the LJ250/ LJ252
Conpani on Col or Printer Progranmer Reference Manual areused. If you
modify the color map, the LILCT procedure can be used to reset the color table
to these defaults. LILCT examinesthe !D.N_COLORS system variable to
determine the number of output planesin use, then loads the appropriate
default color map.

When producing images, stick to images with small amounts of detail and
large sections of uniform color. Complicated images do not reproduce well on
this printer.

Obsolete IDL Features

Chapter 3: Obsolete Graphics Devices 211

The Macintosh Device

Device Keywords Accepted by the MAC Device:

BYPASS _TRANSLATION, COPY, CURSOR_ORIGINAL,
CURSOR_STANDARD, DECOMPOSED, FLOYD, GET_CURRENT_FONT,
GET_FONTNAMES, GET_FONTNUM, GET_GRAPHICS_FUNCTION,
GET_SCREEN_SIZE, GET_WINDOW_POSITION, ORDERED,
PSEUDO_COLOR, RETAIN, SET_CHARACTER_SIZE, SET_FONT,
SET_GRAPHICS_FUNCTION, THRESHOLD, TRANSLATION, TRUE_COLOR

The Macintosh version of IDL usesthe “MAC” device by default. Thisdeviceis
similar to The X Windows Device. The*"MAC” deviceisonly availablein IDL for
Macintosh.

To set plotting to the Macintosh device, use the command:
SET_PLOT, ' MAC

Obsolete IDL Features The Macintosh Device

212 Chapter 3: Obsolete Graphics Devices

The Macintosh Device Obsolete IDL Features

Chapter 4:

Remote Procedure
Calls

Note
Remote Procedure Calls are still included in IDL. The RPC API described here (the
APl included with IDL version 4.0) has been replaced with anew API. Seethe
External Development Guide for details on the RPC API included with IDL version
5.0 and later.

Remote Procedure Calls (RPCs) allow one process (the client process) to have
another process (the server process) execute a procedure call just asif the caller
process had executed the procedure call in its own address space. Since the client and
server are separate processes, they can reside on the same machine or on different
machines. RPC libraries allow the creation of network applications without having to
worry about underlying networking mechanisms.

IDL supports RPCs so that other applications can communicate with IDL. A library
of C language routinesisincluded to handle communication between client programs
andtheIDL server.Note that renmote procedure calls are supported only on
UNI X pl at f or s.

Obsolete IDL Features 213

214

Chapter 4: Remote Procedure Calls

The current implementation allows IDL to be run as an RPC server and your own
programto be run asaclient. IDL commands can be sent from your application to the
IDL server, where they are executed. Variable structures can be defined in the client
program and then sent to the IDL server for creation as IDL variables. Similarly, the
values of variablesin the IDL server session can be retrieved into the client process.

Obsolete IDL Features

Chapter 4: Remote Procedure Calls 215

Using IDL as an RPC Server

The IDL RPC Directory

All of thefilesrelated to using IDL’s RPC capabilities are found inther pc
subdirectory of the ext er nal subdirectory of the main IDL directory. The main
IDL directory isreferred to here asididir.

Running IDL in Server Mode

To use IDL asan RPC server, run IDL in server mode by using the - ser ver
command line option. This option can be invoked one of two ways:

idl -server process_id
or
idl -server=server_nunber process_id

where server_number is the hexadecimal server 1D number (between 0x20000000
and Ox3FFFFFFF) for IDL to use. For example, to run IDL with the server ID
number 0x20500000, use the command:

idl -server=20500000

If aserver ID number is not supplied, IDL usesthe default, IDL_DEFAULT _ID,
defined in thefileidldir/ ext er nal / r pc/ rpc_i dl . h. Thisvalueisoriginally
set to 0Ox2010CAFE.

Theprocess_i d argument is an optional argument that specifiesthe process D of a
UNIX process that should be contacted when IDL has finished running in interactive
mode. If the IDL rpc server is placed in interactive mode and a process ID has been
supplied on the command line, IDL sendsthe UNIX signal SIGUSRL1 to the specified
process. This signal alows the client program to know when it can continue to
communicate with the rpc server.

Creating the IDL RPC Library

The machine that runs the client program must have its own version of the IDL RPC
library. The makefile for thislibrary is contained in the directory

ididir/ ext er nal / r pc. If the machine that runs the client program is not licensed
torun IDL, simply copy the contents of the IDL r pc directory to an appropriate
location on the client machine.

Obsolete IDL Features Using IDL as an RPC Server

216 Chapter 4: Remote Procedure Calls

To build the IDL RPC library, copy the IDL r pc directory to anew directory, change
to that directory, and enter the make command:

cp -Ridldir/external/rpc new pcdir
cd new pcdir
make

The created library is contained in the file newrpcdir/ r pci dl . a. The functions
contained in the library are described in “The IDL RPC Library” on page 217

Linking your Client Program

Your client program must include thefileidldir/ ext ernal / rpc/ rpc_i dl . h.

You must also link the application that communicates with IDL with the IDL RPC
library. For example, to compile and link a program with the IDL RPC library, you
might enter:

cc -c rpcclient.c
cc -o rpcclient.o idldir/external/rpc/rpcidl.a

where rpcclient.c is the name of your program. Note that your actual command lines
and flag settings may be different than the ones shown above, depending upon your C
compiler. The Makef i | e contains details on modifications for various systems.

Using IDL as an RPC Server Obsolete IDL Features

Chapter 4: Remote Procedure Calls 217

The IDL RPC Library

The IDL RPC library contains severa C language interface functions that facilitate
communication between your application and IDL. There are functions to register
and unregister clients, set timeouts, get and set the value of IDL variables, send
commands to the IDL server, and cause the server to exit. These functions are
described below.

Obsolete IDL Features The IDL RPC Library

218 Chapter 4: Remote Procedure Calls

free _idl variable

Syntax
void free_idl _var(varinfo_t* var);
Description
Thisfunction frees al dynamic memory associated with the given variable. Attempts
to free astatic variable are silently ignored. (See “Notes on Variable Creation and
Memory Management” on page 242)
Parameters

var

The address of the varinfo_t structure that contains the information about the variable
to be freed.

Return Value

None

free_idl_variable Obsolete IDL Features

Chapter 4: Remote Procedure Calls 219
get_idl variable

Syntax

int get_idl_variabl e(CLI ENT* client, char* name, varinfo_t* var,
int typecode)

Description

Call thisfunction to retrieve the value of an IDL variablein the IDL session referred
to by client. Any scalar or array variable type can be retrieved. Variables can be
retrieved only from the main program level.

Note that it is not possible to get the value of an IDL structure. To retrieve values
from an IDL structure, “decompose” the structure into regular variablesin IDL, then
use this function to get the values of those individual variables.

It is not possible to get the value of IDL system variables directly. To retrieve the
value of an IDL system variable, first copy it to aregular IDL variable. The value of
the regular variable can then be retrieved with get_idl_variable. For example:

varinfo_t pt;/* Declare variable pt */
send_i dl _command(client, "X =!P.T")
get __idl _variable(client, "X', &t, 0);

Parameters

client
A pointer to the CLIENT structure that corresponds to the desired IDL session.
name

A null terminated string that contains the name of the IDL variable to be retrieved.
Only thefirst MAXI DLEN characters of this string are used. MAXI DLENis defined in
thefileidldir/ ext ernal / rpc/rpc_idl . h.

var

The address of avar i nf o_t structure in which to store the returned variable
information. Upon return, the Nane field of the var structure contains the name of
thevariableasfoundin IDL. If the name suppliedisanillegal IDL variable name, the
Narre field isset to <I LLEGAL_NANME>. If the variable is a structure or associated
variable, the Name field is set to <BAD- VAR- TYPE>.

Obsolete IDL Features get_idl_variable

220

Chapter 4: Remote Procedure Calls

typecode

If you want IDL to typecast avariable (i.e., guarantee the value to be of a particular
type) beforeit is transported, set t ypecode to one of the following values (defined
inthefileexport. h):

IDL_TYP_BYTE, IDL_TYP_INT, IDL_TYP_LONG |DL_TYP_FLOAT,
| DL_TYP_DOUBLE, |DL_TYP_STRING |DL_TYP_COWPLEX, |DL_TYP_DCOVPLEX

For example, the command:
get _idl _variable(client, "x", &v, IDL_TYP_LONG
guarantees that the value in x is returned as a 32-bit integer.

If t ypecode isO, the variable is transferred with whatever data type it hasin the
server. Typecasting only affects the variables in the client — the server side is not
affected.

Return Value

This function returns a status val ue that denotes the success or failure of this function
as described bel ow.

-1 Failure: bad arguments supplied (e.g., name or var isNULL).
0 RPC mechanism failed (an error message may also be printed).
1 Success
-2 lllegal variable name (e.g., “213xyz”, “#d’, “!DEVICE")
-3 Variable not transportable (e.g., the variable is a structure or associated
variable)

get _idl_variable Obsolete IDL Features

Chapter 4: Remote Procedure Calls 221

idl_server_interactive

Syntax
int idl_server_interactive(CLIENT*client)

Description
Call this function to cause the IDL server to become an interactive IDL session. Itis
likely that this command will time out. Some alternative mechanism for determining
when the server isfinished should be implemented. Seethe exampleser ver. c in
theidldir/exanpl es/ r pc directory.

Parameters

client

A CLIENT structure that corresponds to the desired IDL session.

Return Value

This function returns TRUE if the interactive IDL session did not time out. FALSE is
returned if the session times out or otherwise fails.

Obsolete IDL Features idl_server_interactive

222 Chapter 4: Remote Procedure Calls

kill server

Syntax
int kill_server(CLIENT*client)
Description
Call thisfunction to kill the IDL RPC server.

Parameters

client

The pointer to a CLIENT structure registered with the server to be killed.
Return Value

This function returns TRUE if the server was successfully killed. FALSE is returned
otherwise.

kill_server Obsolete IDL Features

Chapter 4: Remote Procedure Calls 223
register_idl_client

Syntax
CLIENT* register_idl_client(long server_id, char* hostnaneg,
struct tineval* tinmeout)

Description

Call thisfunction to register your program as aclient of an IDL server. Note that a
program can be the client of a number of different servers at the same time and a
single server can have multiple clients.

Parameters

server_id

The ID number of the IDL server that the program isto be registered with. If this
valueis 0, the default server ID (0x2010CAFE) is used.

hostname

The name of the machine where the IDL server isrunning. If thisvalueis NULL or
"" thedefault, | ocal host ,isused.

timeout

A pointer to the timeout value for all communication with IDL servers. If thisvalueis
NULL or 0, the default timeout, 60 seconds, is used.

Return Value

A pointer to the new CLIENT structure isreturned. This function returns NULL if it
is unsuccessful.

Obsolete IDL Features register_idl_client

224 Chapter 4: Remote Procedure Calls

send _idl_command

Syntax

int send_idl _comrand(CLI ENT* client, char* comrand);

Description
Call this function to send an IDL command to the IDL server referred to by client.
The command is executed just as if it had been entered from the IDL command line.

This function cannot be used to send multi-line commands. If the first part of amulti-
line command is sent, for example:

send_i dl _command(client, "FOR 1=1,5 DO $");

IDL spawns an interactive session and may hang. In any case, subsequent commands
are not executed.

Parameters

client
A pointer to the CLIENT structure that corresponds to the desired IDL session.
command

A null-terminated string with no more than MAX_STRI NG_LEN characters.
MAX_ STRI NG_LENisdefined inthefileidldir/ external /rpc/rpc_idl . h.

Return Value

This function returns a status val ue that denotes success or failure as described below.
e -1 =RPC communication failure (an error message is also printed).
e 0=CommandisNULL.
e 1=Success.

For all other errors, the error number is returned. This number could be passed as an
argument to STRMESSAGE() ; .

send_idl_command Obsolete IDL Features

Chapter 4: Remote Procedure Calls 225

set_idl_timeout

Syntax

int set_idl_tinmeout(struct tineval* timeout)
Description

Call thisfunction to replace the current timeout used by the RPC mechanism with the
given timeout.

Parameters

timeout

A pointer to the new timeout value to be used. This parameter has no default.
Return Value

This function returns TRUE if the timeout was replaced. FALSE is returned if the
timeout value was NULL or zero.

Obsolete IDL Features set_idl_timeout

226 Chapter 4: Remote Procedure Calls

set_idl variable

Syntax
int set_idl_variable(CLIENT* client, varinfo_t* var);

Description

Call thisfunction to assign avalueto an IDL variablein the IDL session referred to
by cl i ent. Theaddressvar pointstoavari nf o_t structurethat contains
information about the variable to be set. The “helper” functions can be used to build
var. (See“Thevarinfo_t Structure” on page 230) Any scalar or array variable type
can be set. Variables can be set only in the main IDL program level.

Note that it is not possible to set the value of an IDL structure. To set valuesin an IDL
structure, set theindividual € ements of the structure to scalar IDL variables, then use
thesend_i dl _comrand function to create the structurein IDL.

It isnot possible to set the value of IDL system variables directly. To set the value of
an IDL system variable, first set the value of aregular IDL variable. The value of the
regular variable can then be assigned to the system variable. For example:

set _idl _variable(client, &ewar); /* newar describes the */

/* |IDL variable "NEW */
send_i dl _command(client, "!'P.T = NEW);

Parameters

client

A pointer to the CLIENT structure that corresponds to the desired IDL session.
var

The address of thevar i nf o_t structure that contains information about the
variable to be set.

Return Value

This function returns a status val ue that denotes the success or failure of this function
as described bel ow.

e -1 =TFailure: bad arguments supplied (e.g., var isSNULL).

set_idl_variable Obsolete IDL Features

Chapter 4: Remote Procedure Calls 227

¢ 0=RPC mechanism failed (an error message is a so printed).

. 1 = Success

Obsolete IDL Features set_idl_variable

228 Chapter 4: Remote Procedure Calls
set_rpc_verbosity

Syntax
voi d set_rpc_verbosity(verbosity)

Description
This function controls the printing of error messages by RPC library routines. If
verbosity is TRUE, error messages will be printed by the various RPC routines to
explain what failed. If verbosity is FALSE, return codes continue to indicate success
or failure, but no error messages are printed.

Parameters

verbosity

Ani nt specifying TRUE or FAL SE as explained above.

Return Value

None

set_rpc_verbosity Obsolete IDL Features

Chapter 4: Remote Procedure Calls 229
unregister_idl_client

Syntax
voi d unregister_idl _client(CLI ENT* client)
Description
Call this function to release the resources associated with the given CLIENT
structure. The operating system automatically releases the resources associated with
all CLIENT structures when your program exits. This function does not affect the
IDL server.

Parameters

client

The pointer to the CLIENT structure to be unregistered.
Return Value

None

Obsolete IDL Features unregister_idl_client

230 Chapter 4: Remote Procedure Calls

The varinfo_t Structure

Thevari nf o_t structureisused to pass variablesto and from the IDL server.

Thevari nf o_t structureisdefinedintheidldir/ external /rpc/rpc_idl.h
file. The structureis:

typedef struct _VARI NFO {
char Name[MAXI DLEN+1] ;

| DL_VPTR Vari abl e;

| DL_LONG Lengt h;

} varinfo_t;

Variable Creation Functions

A number of functions are provided to help build var i nf o_t structures. These
functions are contained in the fileidldir/ ext er nal / r pc/ hel per. c.

The variable creation functions are described below. Unless otherwise noted, all of
the following functions return TRUE if variable creation is successful and FALSE
otherwise. When passing avar i nf o_t structure pointer, if the Vari abl e fieldis
NULL, the variable creation functions attempt to allocate that field.

The varinfo_t Structure Obsolete IDL Features

Chapter 4: Remote Procedure Calls 231
v_make_byte

Syntax

int v_nmake_byte(varinfo_t* var_struct, char* var_nane,
unsi gned val ue)

Description

Create an IDL byte variable with the given name and value.

Obsolete IDL Features v_make_byte

232 Chapter 4: Remote Procedure Calls

v_make_complex

Syntax

int v_nmake_conpl ex(varinfo_t* var_struct, char* var_nane,
doubl e real _val ue, doubl e inag_val ue)

Description

Create an IDL complex variable.

v_make_complex Obsolete IDL Features

Chapter 4: Remote Procedure Calls 233

v_make_dcomplex

Syntax

int v_nmake_dconpl ex(varinfo_t* var_struct, char* var_namne,
doubl e real _val ue, doubl e inag_val ue)

Description

Create an IDL double-precision complex variable.

Obsolete IDL Features v_make_dcomplex

234 Chapter 4: Remote Procedure Calls

v_make double

Syntax

int v_nmnake_doubl e(varinfo_t* var_struct, char* var_nane,
doubl e val ue)

Description

Create an IDL double-precision, floating-point variable.

v_make_double Obsolete IDL Features

Chapter 4: Remote Procedure Calls 235

v_make float

Syntax

int v_nmake_float(varinfo_t* var_struct, char* var_nane,
doubl e val ue)

Description

Create an IDL single-precision, floating-point variable.

Obsolete IDL Features v_make_float

236 Chapter 4: Remote Procedure Calls
v_make_int

Syntax

int v_make_int(varinfo_t* var_struct, char* var_nane, int val ue)

Description

Create an IDL (16-hit) integer variable.

v_make_int Obsolete IDL Features

Chapter 4: Remote Procedure Calls 237

v_make_long

Syntax

int v_make_l ong(varinfo_t* var_struct, char* var_nane,
I DL_LONG val ue)

Description

Createan IDL long variable.

Obsolete IDL Features v_make_long

238 Chapter 4: Remote Procedure Calls
v_make_string

Syntax

int v_make_string(varinfo_t* var_struct, char* name,
char* val ue)

Description

Create an IDL string variable.

v_make_string Obsolete IDL Features

Chapter 4: Remote Procedure Calls 239
v_fill_array

Syntax

int v_fill_array(varinfo_t* var, char* name, int type,
i nt ndinmension, 1DL_LONG di ns[], UCHAR* val ue,
I DL_I ong | ength)

Description

Create an IDL array variable. The type argument should be one of the following
values (defined inthe file export . h):

IDL_TYP_BYTE, IDL_TYP_INT, IDL_TYP_LONG |DL_TYP_FLOAT,
I DL_TYP_DOUBLE, |DL_TYP_STRING |DL_TYP_COWPLEX, |DL_TYP_DCOVPLEX

Thisfunction allocatesvar - >Vari abl e- >val ue. arr.
If val ue isNULL thenvar - >Vari abl e- >val ue. arr - >dat a isallocated.
Thedi ms[] argument should have at least ndi mensi on valid elements.

If val ue issupplied but | engt h is0, var->Length isfilled with the computed size
of the array (in bytes) and val ue isassumed to point to at least that many bytes of
memory. If val ue and | engt h are supplied, | engt h isassumed to be the size (in
bytes) of the region of memory that value pointsto. (See “Notes on Variable Creation
and Memory Management” on page 242)

Obsolete IDL Features v_fill_array

240 Chapter 4: Remote Procedure Calls

More Variable Manipulation Macros

The following macros can be used to get information from var i nf o_t structures.
Like the variable creation functions, these macros are defined in thefile
rpc_idl. h.

All of these macros accept asingle argument v of var i nf o_t type.
GetArrayData(v)

This macro returns a pointer to the array data described by thevari nf o_t
structure.

GetArrayDimensions(v)

This macro returns the dimensions of the array described by thevari nf o_t
structure. The dimensions arereturned as| ong di mensi ons|[].

GetArrayNumDims(v)

This macro returns the number of dimensions of the array.
GetVarByte(v)

This macro returns the value of a 1-byte, unsigned char vari abl e.
GetVarComplex(v)

This macro returns the value (as a struct, not a pointer) of a complex variable.

GetVarDComplex(v)

This macro returns the value (as a struct, not a pointer) of a double-precision,
complex variable.

GetVarDouble(v)

This macro returns the value of a double-precision, floating-point variable.

More Variable Manipulation Macros Obsolete IDL Features

Chapter 4: Remote Procedure Calls 241

GetVarFloat(v)
This macro returns the value of a single-precision, floating point variable.
GetVarint(v)
This macro returns the value of a 2-byte integer variable.
GetVarLong(v)
This macro returns the value of a4-byte integer variable.
GetVarString(v)
This macro returns the value of a string variable (as a char*).
GetVarType(v)
This macro returns the type of the variable described by thevar i nf o_t structure.
Thetypeisreturned as| DL_TYP_XXX as described under the documentation for the
get i dl _vari abl e function.

VarisArray(v)

This macro returns non-zero if visan array variable.

Obsolete IDL Features More Variable Manipulation Macros

242 Chapter 4: Remote Procedure Calls

Notes on Variable Creation and Memory
Management

This section contains miscellaneous notes about variable creation.
Freeing Resources

Thevariable creation functions (i.e.,, v_nmake_xxx) do not free resources associated
with a variable before placing new information there. Your programs should free
resources (if there are any) associated with thevar i nf o_t structure being passed.

To prevent memory leakage, memory associated with avariable is freed before new
memory is allocated. You should make sure that thevar i nf o_t structure passed to
theget _i dl _vari abl e function contains valid information or has been cleared
(to zeroes) first. If an array of the same size, dimensions, and type is being read into
the existing array variable, no allocation is performed and the same space is re-used.
For example:

/* Assune that:

X = FLTARR(1000, 1000)
Y = FLTARR(1000, 1000)
Z = LONARR(1000, 1000)sane size, different type

*/
bzero(&vinfo, sizeof(vinfo));
get _idl _variable(client, "X", &info, 0); /* array allocated */

get _idl __variable(client, "Y', &info, 0); /* menory re-used */
get _idl _variable(client, "Z", &info, 0); /* array allocated */
free_idl _var (&vinfo);

Theget _idl _vari abl e functioncalsfree_i dl _var beforedoing any
alocation. So, in the example above, we only needed to free Z. X and Y were freed
when were-used vi nf o.

Creating a Statically-Allocated Array

It is possible to create a statically-allocated array for receiving information from the
server without having the overhead of memory reallocation every time information is
received.

If the Lengt h field of thevar i nf o_t structureis not zero, it is assumed to be the
size of the array data. Thef ree_i dl _var function will not do anything to a
variable where length is non-zero. It is up to the programmer to do their own memory

Notes on Variable Creation and Memory Management Obsolete IDL Features

Chapter 4: Remote Procedure Calls 243

management if thisisthe case. Storing ascalar in astatic variable (i.e., avariable that
has anon-zero Lengt h field) fails as does attempting to store an array that does not
fit the statically-allocated array. For example:

/* X = FLTARR(10) 40 bytes of data (10*4)
Y = LONARR(2,2,2) 32 bytes of data(2*2*2*4)
Z = BYTARR(50) 50 bytes of data
W= 12 scal ar

*/

char buf [40]

varinfo_t v;
VARI ABLE var ;

ARRAY arr;

/* Build a static array. Fill in the mninum anount of */
/* information required. */
v. Vari abl e = &var;

v. Length = 40;

var.type = | DL_TYP_BYTE;

var. fl ags = V_ARR

var.value.arr = &arr;

arr.data = buf;

get _idl __variable(client, "X', &, 0); [/* ok */

get _idl _variable(client, "Y', &, 0); [/* ok */

get _idl _variable(client, "2Z", &, 0); [/* fails —too big */
get _idl _variable(client, "W, &, 0); [/* fails —scalar */

Allocating Space for Strings

All space for strings is assumed to be abtained viamal | oc(3) . Thisfactis
important only when receiving variables (using theget _i dl _vari abl e
function). For example, the following code fragment is valid:

v_make_string(& oo, "UGH', "blug");
set _idl _variable(client, &fo00);

Here is an example of code that will crash your program:

v_make_string(& oo, "UGH', "blug");

set _idl _variabl e(me, &fo00);

send_i dl _command(nme, "UGH="hello world' ");
get _idl _variabl e(me, "UGH', &foo, 0);

Inthiscase, theget i dl _vari abl e function attempts to free the old resources
before allocating new storage. Freeing the constant bl ug resultsin an error. You
could achieve the desired result without an error by changing thefirst line to:

v_make_string(& oo, "UGH', strdup("blug"));

Obsolete IDL Features Notes on Variable Creation and Memory Management

244 Chapter 4: Remote Procedure Calls

RPC Examples

A number of examplefilesareincluded in theidldir/ ext er nal / exanpl es/ r pc
directory. A Makef i | e for these examplesisa so included. These short C programs
demonstrate the use of the IDL RPC library.

RPC Examples Obsolete IDL Features

	Online Manuals
	Online Guide
	IDL Documentation
	What's New in IDL 6.0
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	iTool User's Guide
	iTool Developer's Guide
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	External Development Guide
	Obsolete IDL Features
	Master Index of IDL Docs

	IDL DataMiner Documentation
	IDL Dataminer
	DataDirect Connect ODBC Reference (3.1.1 for IRIX)
	DataDirect Connect ODBC Reference (3.7 for other platforms)

	IDL Wavelet Documentation
	IDL Wavelet Toolkit

	ION Documentation
	Introduction to ION
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	Search Documentation

	Contents
	Overview
	Backwards Compatibility
	IDL Internal Routines
	Routines Written in IDL

	Detecting Use of Obsolete Features
	Documentation for Older Obsolete Routines

	Obsolete Routines
	DDE Routines
	Result = DDE_GETSERVERS()
	Result = DDE_GETTOPICS(server)
	Result = DDE_GETITEMS(server)
	Result = DDE_REQUEST(server, topic, item)
	DDE_EXECUTE, server, topic, command

	DELETE_SYMBOL
	Name
	TYPE

	DELLOG
	Lognam
	TABLE

	DEMO_MODE
	DO_APPLE_SCRIPT
	Script
	AS_STRING
	RESULT

	ERRORF
	X

	GETHELP
	Variable
	FULLSTRING
	FUNCTIONS
	ONELINE
	PROCEDURES
	SYS_PROCS
	SYS_FUNCS

	GET_SYMBOL
	Name
	TYPE

	HANDLE_CREATE
	ID
	FIRST_CHILD
	NO_COPY
	SIBLING
	VALUE

	HANDLE_FREE
	ID

	HANDLE_INFO
	ID
	FIRST_CHILD
	NUM_CHILDREN
	PARENT
	SIBLING
	VALID_ID

	HANDLE_MOVE
	Static_ID
	Move_ID
	FIRST_CHILD
	SIBLING

	HANDLE_VALUE
	ID
	Value
	NO_COPY
	SET

	HDF_DFSD_ADDDATA
	Filename
	Data
	OVERWRITE
	SET_DIM
	SET_TYPE

	HDF_DFSD_DIMGET
	Dimension
	FORMAT
	LABEL
	SCALE
	UNIT

	HDF_DFSD_DIMSET
	Dimension
	FORMAT
	LABEL
	SCALE
	UNIT

	HDF_DFSD_ENDSLICE
	HDF_DFSD_GETDATA
	Filename
	Data
	GET_DIMS
	GET_TYPE

	HDF_DFSD_GETINFO
	Filename
	CALDATA
	COORDSYS
	DIMS
	FORMAT
	LABEL
	LASTREF
	NSDS
	RANGE
	TYPE
	UNIT

	HDF_DFSD_GETSLICE
	Filename
	Data
	COUNT
	OFFSET

	HDF_DFSD_PUTSLICE
	Data
	COUNT

	HDF_DFSD_READREF
	Filename
	Refno

	HDF_DFSD_SETINFO
	BYTE
	CALDATA
	CLEAR
	COORDSYS
	DIMS
	DOUBLE
	FLOAT
	FORMAT
	INT
	LABEL
	LEN_LABEL
	LEN_UNIT
	LEN_FORMAT
	LEN_COORDSYS
	LONG
	RANGE
	RESTART
	UNIT

	HDF_DFSD_STARTSLICE
	Filename
	IDL Output

	HDF_VD_GETNEXT
	VData
	Id

	INP, INPW, OUTP, OUTPW
	Result = INP(Port, [D1 . . . DN])
	Result = INPW(Port, [D1 . . . DN])
	OUTP, Port, Value
	OUTPW, Port, Value

	LIVE_Tools
	LIVE_CONTOUR
	Zn
	BUFFER
	DOUBLE
	DIMENSIONS
	DRAW_DIMENSIONS
	ERROR
	INDEXED_COLOR
	INSTANCING
	LOCATION
	MANAGE_STYLE
	NAME
	NO_DRAW
	NO_STATUS
	NO_TOOLBAR
	PARENT_BASE
	REFERENCE_OUT
	RENDERER
	REPLACE
	STYLE
	TITLE
	TLB_LOCATION
	WINDOW_IN
	XINDEPENDENT
	YINDEPENDENT
	XLOG
	YLOG
	XRANGE
	YRANGE
	X_TICKNAME
	Y_TICKNAME

	LIVE_CONTROL
	Name
	DIALOG
	ERROR
	NO_DRAW
	PROPERTIES
	UPDATE_DATA
	WINDOW_IN

	LIVE_DESTROY
	Name
	ENVIRONMENT
	ERROR
	NO_DRAW
	PURGE
	WINDOW_IN

	LIVE_EXPORT
	APPEND
	COMPRESSION (TIFF)
	DIALOG
	DIMENSIONS
	ERROR
	FILENAME
	ORDER (JPEG, TIFF)
	PROGRESSIVE (JPEG)
	QUALITY (JPEG, VRML)
	RESOLUTION
	TYPE
	UNITS
	VISUALIZATION_IN
	WINDOW_IN

	LIVE_IMAGE
	Image
	BLUE
	BUFFER
	DIMENSIONS
	DRAW_DIMENSIONS
	ERROR
	GREEN
	INDEXED_COLOR
	INSTANCING
	LOCATION
	MANAGE_STYLE
	NAME
	NO_DRAW
	NO_STATUS
	NO_TOOLBAR
	PARENT_BASE
	RED
	REFERENCE_OUT
	RENDERER
	REPLACE
	STYLE
	TITLE
	TLB_LOCATION
	WINDOW_IN

	LIVE_INFO
	Name
	ERROR
	PROPERTIES
	WINDOW_IN
	Color Names
	Line Annotations
	Rectangle Annotations
	Text Annotations
	Axes
	Colorbars
	Contours
	Images
	Legends
	Surfaces
	Entire Visualizations
	Windows

	LIVE_LINE
	ARROW_ANGLE
	ARROW_END
	ARROW_SIZE
	ARROW_START
	COLOR
	DIALOG
	DIMENSIONS
	ERROR
	HIDE
	LINESTYLE
	LOCATION
	NAME
	NO_DRAW
	REFERENCE_OUT
	THICK
	VISUALIZATION_IN
	WINDOW_IN

	LIVE_LOAD
	LIVE_OPLOT
	YVector
	ERROR
	INDEPENDENT
	NAME
	NEW_AXES
	NO_DRAW
	REFERENCE_OUT
	REPLACE
	SUBTYPE
	VISUALIZATION_IN
	WINDOW_IN
	X_TICKNAME
	Y_TICKNAME
	XAXIS_IN
	YAXIS_IN

	LIVE_PLOT
	YVector
	BUFFER
	DIMENSIONS
	DOUBLE
	DRAW_DIMENSIONS
	ERROR
	HISTOGRAM
	INDEPENDENT
	INDEXED_COLOR
	INSTANCING
	LINE
	LOCATION
	MANAGE_STYLE
	NAME
	NO_DRAW
	NO_STATUS
	NO_TOOLBAR
	PARENT_BASE
	POLAR
	REFERENCE_OUT
	RENDERER
	REPLACE
	SCATTER
	STYLE
	TITLE
	TLB_LOCATION
	WINDOW_IN
	XLOG
	YLOG
	XRANGE
	YRANGE
	X_TICKNAME
	Y_TICKNAME

	LIVE_PRINT
	DIALOG
	ERROR
	WINDOW_IN
	Obsolete Keywords

	LIVE_RECT
	COLOR
	DIALOG
	DIMENSIONS
	ERROR
	HIDE
	LINESTYLE
	LOCATION
	NAME
	NO_DRAW
	REFERENCE_OUT
	THICK
	VISUALIZATION_IN
	WINDOW_IN

	LIVE_STYLE
	Type
	BASE_STYLE
	COLORBAR_PROPERTIES
	GRAPHIC_PROPERTIES
	Plots
	Images
	Contours
	Surfaces

	GROUP
	LEGEND_PROPERTIES
	NAME
	SAVE
	VISUALIZATION_PROPERTIES
	XAXIS_PROPERTIES, YAXIS_PROPERTIES, ZAXIS_PROPERTIES

	LIVE_SURFACE
	Data
	BUFFER
	DIMENSIONS
	DOUBLE
	DRAW_DIMENSIONS
	ERROR
	INDEXED_COLOR
	INSTANCING
	LOCATION
	MANAGE_STYLE
	NAME
	NO_DRAW
	NO_STATUS
	NO_TOOLBAR
	PARENT_BASE
	REFERENCE_OUT
	RENDERER
	REPLACE
	STYLE
	TITLE
	TLB_LOCATION
	WINDOW_IN
	XINDEPENDENT
	YINDEPENDENT
	XLOG
	YLOG
	XRANGE
	YRANGE
	X_TICKNAME
	Y_TICKNAME

	LIVE_TEXT
	Text
	ALIGNMENT
	COLOR
	DIALOG
	ENABLE_FORMATTING
	ERROR
	FONTNAME
	FONTSIZE
	HIDE
	LOCATION
	NAME
	NO_DRAW
	REFERENCE_OUT
	TEXTANGLE
	VERTICAL_ALIGNMENT
	VISUALIZATION_IN
	WINDOW_IN

	LJLCT
	PICKFILE
	POLYFITW
	X
	Y
	Weights
	NDegree
	Yfit
	Yband
	Sigma
	Corrm
	DOUBLE
	STATUS

	REWIND
	Unit

	RIEMANN
	P
	A
	Theta
	BACKPROJECT
	BILINEAR
	CENTER
	COR
	CUBIC
	D
	ROW

	RSTRPOS
	Expression
	Search_String
	Pos

	SET_SYMBOL
	Name
	Value
	TYPE

	SETLOG
	Lognam
	Value
	CONCEALED
	CONFINE
	NO_ALIAS
	TABLE
	TERMINAL

	SIZE Executive Command
	SKIPF
	Unit
	Files
	Records
	R

	SLICER
	A
	CMD_FILE
	COMMAND
	DETACHED
	GROUP
	NO_BLOCK
	RANGE
	RESOLUTION
	COLOR Table_Index Low High Shading
	CUBE Mode Cut_Ovr Interp X0 Y0 Z0 X1 Y1 Z1
	ERASE
	ISO Threshold Hi_Lo
	ORI X_Axis Y_Axis Z_axis X_Rev Y_Rev Z_Rev X_Rot Z_Rot Asp
	SLICE Axis Value Interp Expose 0
	SLICE Azimuth Elev Interp Expose 1 X0 Y0 Z0
	TRANS On_Off Threshold
	UNDO
	WAIT Secs

	STR_SEP
	Str
	Separator
	TRIM
	REMOVE_ALL
	ESC
	IDL Output

	TAPRD
	Unit
	Array
	Byte_Reverse

	TAPWRT
	Unit
	Array
	Byte_Reverse

	TIFF_DUMP
	File

	TIFF_READ
	File
	R, G, B
	ORDER
	PLANARCONFIG

	TIFF_WRITE
	File
	Array
	Orientation
	RED, GREEN, BLUE
	PLANARCONFIG
	XRESOL
	YRESOL
	TIFF Class G, Grayscale.
	TIFF Class P, Palette Color
	TIFF Class R, RGB Full Color, color interleaved by pixel
	TIFF Class R, RGB Full Color, color interleaved by image

	TRNLOG
	Lognam
	Value
	ACMODE
	FULL_TRANSLATION
	ISSUE_ERROR
	RESULT_ACMODE
	RESULT_TABLE
	TABLE

	VAX_FLOAT
	Default
	FILE_UNIT

	WEOF
	Unit

	WIDED
	WIDGET_MESSAGE

	Routines with Obsolete Keywords
	BYTEORDER
	DTOGFLOAT
	GFLOATTOD

	CALL_EXTERNAL
	DEFAULT
	PORTABLE
	VAX_FLOAT (VMS Only)

	DEVICE
	DEPTH
	FONT

	DOC_LIBRARY
	FILE
	PATH
	OUTPUTS

	EXTRACT_SLICE
	CUBIC

	IDLgrMPEG::Save
	CREATOR_TYPE

	IDLgrVolume::Init
	CUTTING_PLANES (Get, Set)

	LINKIMAGE
	DEFAULT

	LIVE_PRINT
	SETUP

	MAKE_DLL
	VAX_FLOAT

	ONLINE_HELP
	HTML_HELP

	OPEN
	MACCREATOR
	MACTYPE
	NOSTDIO
	BLOCK
	DEFAULT
	EXTENDSIZE
	FIXED
	FORTRAN
	INITIALSIZE
	KEYED
	LIST
	NONE
	PRINT
	SEGMENTED
	SHARED
	STREAM
	SUBMIT
	SUPERSEDE
	TRUNCATE_ON_CLOSE
	UDF_BLOCK
	VARIABLE
	BINARY
	NOAUTOMODE

	PRINT/PRINTF
	REWRITE

	READ_TIFF
	ORDER
	UNSIGNED

	READ/READF
	KEY_ID
	KEY_MATCH
	KEY_VALUE

	READU
	KEY_ID
	KEY_MATCH
	KEY_VALUE

	SAVE
	XDR

	SPAWN
	FORCE
	MACCREATOR
	NOCLISYM
	NOLOGNAM
	NOTIFY

	WIDGET_BASE
	APP_MBAR

	WRITE_TIFF
	ORDER

	WRITEU
	REWRITE

	Obsolete Graphics Devices
	The LJ Device
	Device Keywords Accepted by the LJ Device:
	LJ Driver Strengths
	LJ Driver Limitations
	LJ Suggestions

	The Macintosh Device
	Device Keywords Accepted by the MAC Device:

	Remote Procedure Calls
	Using IDL as an RPC Server
	The IDL RPC Directory
	Running IDL in Server Mode
	Creating the IDL RPC Library
	Linking your Client Program

	The IDL RPC Library
	free_idl_variable
	var

	get_idl_variable
	client
	name
	var
	typecode

	idl_server_interactive
	client

	kill_server
	client

	register_idl_client
	server_id
	hostname
	timeout

	send_idl_command
	client
	command

	set_idl_timeout
	timeout

	set_idl_variable
	client
	var

	set_rpc_verbosity
	verbosity

	unregister_idl_client
	client

	The varinfo_t Structure
	Variable Creation Functions

	v_make_byte
	v_make_complex
	v_make_dcomplex
	v_make_double
	v_make_float
	v_make_int
	v_make_long
	v_make_string
	v_fill_array
	More Variable Manipulation Macros
	Notes on Variable Creation and Memory Management
	Freeing Resources
	Creating a Statically-Allocated Array
	Allocating Space for Strings

	RPC Examples

