ITool Developer’s
Guide

IDL Version 6.0

July, 2003 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

Research Systems Inc.

0703IDL60ITD

Restricted Rights Notice

The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. Research Sys-
tems, Inc., reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of the soft-
ware, merchantability, or fithess for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered
by the Licensee or any others resulting from use of the IDL or ION software packages or their doc-
umentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, Research Systems, Inc. grants you alimited, nontransfer-
able license to reproduce this particular document provided such copies are for your use only and
are not sold or distributed to third parties. All such copies must contain the title page and this
notice page in their entirety.

Acknowledgments

IDL® isaregistered trademark and ION™, ION Script™, |ON Java™, are trademarks of Research Systems Inc., registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Librar

Copyright ® 1999

National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by INTERSOLYV, Inc., 1991-1998.

Use of this software for providing LZW capability for any purpose is not authorized unless user first entersinto alicense agreement
with Unisys under U.S. Patent No. 4,558,302 and foreign counterparts. For information concerning licensing, please contact: Unisys
Corporation, Welch Licensing Department - C1SW19, Township Line & Union Meeting Roads, PO. Box 500, Blue Bell, PA 19424.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.
Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1:

L@ AT YT PP 7
WHhaE @r€ ITOOIS? ...ttt ettt e e e s teeaeeneebeseesneeneense e 8
What isthe iTools Component Framework?cccccvvieeeveie s 9
ADOUL thISIMBNUEL ...ttt ee e 10
AboUL the i TOOIS COUE BASEccecveceecese sttt ere s 11
Skills Required to Use the iTools Component Frameworkcccecveeverieciiecieeivennens 13

Part I: Understanding the iTools Component Framework

Chapter 2:

ITOOI System ArChiteCTUIEvviiiiiiiie e 17
OVEIVIBIW <.ttt st b e bbb bbb sb et benbe st e e ens 18
iITOOI ODJECE IAENLITIENS ..veeiee ettt e e e saeesnee e 19
iITOOI ODJECE HIEIAICNYocviieiceiie sttt saesners 21
RegiStering COMPONENESeciieeieeiieesieesieesteeie e este e ee e e e s saeseestesneesreesseesneesaesssessnenns 22

iTool Developer’s Guide 3

ITOOI MESSAGING SYSLEM ...ttt sttt ettt e e s be s re e e eesresnens 25
SYSIEM RESDUITES ...ttt nr e sr e nenre s 28
Chapter 3:

Data ManagemeEnTiiiiiiiiii i 31
(@< V= TSP RSTRRN 32
ITOOI DA@MEBNAGETc.eeeeuieeeriiieieeet sttt sttt b st b e et sbe e e 33
[l Te B T v R 1Y o= 34
I TOOI DA@ ODJECLS ...c.veveueeiirieriesieee sttt se et b bbbt e et eb e e e 36
Predefined iITOOl DAla ClaSSESccoceiererieie ettt e e 38
PAIGMELELS ...ttt st e s be e bt e s b e e eb e e e be e e naeennee s 41
(D= = B I/ 0= 1Y/ = (o 11 o 43
Data Update MECNANISIMcc.eiuiieieerieriesieee ettt 45
Chapter 4:

Property Management ... 47
About the Properties INTEITACEcoovveiiieererereee e 48
Property Dala TYPES ...eiiieeiiieeiiiesieesieesiee st s sttt e e s bt sbe e s saae s sbessnbe e s sbee s saeeesaseenaneans 51
REQISLENING PrOPEITIEScoeiiiieeeee ettt sae e saeseeseeeee e 54
Property [AENIFIErS ...cviieeeece et e e resne e 57
Property AttHDULESooeee e et 58
Property AQQregationcceceiiieere ettt s ne e e nne s 61
Property Update MEChaNISIMooeeieieeeere et 63
Properties of the iTOOIS SYSLEMcvciiiiece e e 64

Part Il: Using the iTools Component Framework

Chapter 5:

Creating an iTOO! ... e 67
OVEIVIBIW ..ttt r e e et n e ne e s e e et n e e e e e enenr e re e 68
Creating aNEW iITOOI ClESSccceiiriiieieerire s ene s 69
Registering aNeW TOOI ClESSccvciieiiiie et e e nre e sreennas 78
Creating an iTool LAuNCh ROULINEccueoiiiriiiieieieisie s 80
Example: SIMPIEITOO!cveeeeece e ere e sreenas 85
Chapter 6:

Creating a Visualizationcoooiiiiiiiiiiii e 89
OVEIVIBIW ...ttt h e bt e bbb e Rt b et n et n e e n e enas 90

Contents iTool Developer’s Guide

Predefined iTool Visualization CIaSSES ... 91
Creating aNew VisualiZation TYPEcoceoiiieeeiee st ee e 95
Registering aVisualiZation TYPE ...uecvcveiieiieiee e eeete s e et sre e sresneas 110
Unregistering aVisualiZation TYPEcoeveeeeere et seesneas 112
Example: Image-Contour ViSUaliZBLIONcccvieeeeieenieieceesie e seesie e e saesreeneas 113
Chapter 7:

Creating an OPEerationooooiceiiiiiiiiiiiiieeee e 119
(@< V= T 120
Predefined iITOOI OPEralionScccccveieiie it ene e 122
Operations and the UNdo/REJO SYSEEMccooiiiriierinereeerese e 123
Creating aNew Data-CentriC OPerationccccccevvrecerniersiesee s ses e e seeseesseeseee s 125
Creating aNew Generalized OPerationccoereeererereniereseseseee e 138
Registering an OPEIatioNcccccveieiiieeie s e see e e e se e sre e e e s e e e e teeeeeseeeeeenees 153
UNregistering an OPEratiONcccovereererererienieese st sre e see e ssessesenens 155
Example: Data Resample OPeErationccccvveriieevieeseesee e e sieesee e esseeseeeseesnee s 156
Chapter 8:

Creating a File Reader ... 161
OVEIVIBIW ..ttt b sttt b e ettt b e bbb st et et e b e sbe it e 162
Predefined iTOOl FII@ REAUEN'Soce e 163
Creating aNew FII@ REAAETcccoov e 166
Registering aFile REAAENc.ooiieeee e 177
Unregistering aFillE@ REAAEYcviv e 178
Example: TIFF File REAAENocoieeee et 179
Chapter 9:

Creating @ File WIILETuuuieiciie et e e e e e e e e e e eeeeenennees 185
OVEIVIBIW ...ttt sttt b et b e s bbbt b e st et et e besbe it e 186
Predefined ITOOl FIl@ WITEIS .. .ocuiiiee et 187
Creating aNEW FIIE WIILEE ..ot 190
RegIStEring @ FilE WIILEN ..o 201
UNregistering @aFE WIILEN ..o ene s 202
EXaMPIE: TIFF FIE WL ..eeeeieeeeee et 203

iTool Developer’s Guide Contents

6

Part 1ll: Modifying the iTool User Interface
Chapter 10:

iTool User Interface ArchiteCtureccceevvviiiiiiiiiiinie s 209
(@< V= 210
User INterface ODJECLSooiveeiieci e e e e reenre e 212
Chapter 11:

Using iTool User Interface Elementscccccceeiiiiiiiiiiiiiiiiiiiiiieeeee 215
(@< V= 216
SEAEUS IMESSAGESeveieeieeieieeeeeesee e see e stte e st e st e sste e s teesbeeesseeenseeesseeeseeenseeeanseesnseesnnnenns 217
PIOIMILS .ottt r et n e e 219
INFfOrMatioNal MESSAgESccueeieeriieriieseere e e rte et ee e e ree st st e s e e sneesneesreesnee e 221
Chapter 12:

Creating a User Interface ServiCeccccvvuiiiiiieiiiiiiiieieeeeeeeeeeeeeenaennns 223
OVEIVIBIW .ttt bbbt a et b ettt b e se et e bt s b et et b e ne e s 224
Predefined iITOOl Ul SEIVICESoooiere ettt 225
Creating aNEW Ul SEIVICEoov ettt e eae s 226
REGISIENNG AU SEIVICE ... 231
Executing aUser INtErfate SEIVICEovivvcieie ettt 233
Example: Changing aProperty ValUe ..o 234
Chapter 13:

Creating a User Interface Panelcccooovvviiiiiiii e, 241
(@< V= T 242
Creating a Ul Panel INEITACEccovireiieiiirisereeee e 243
Creating Callback ROULINEScccciieiiiiiciecie e e e s nnes 248
Registering Ul Panelcooiiiieee et 250
Example: A SIMpPle Ul Pan€l ..ottt 252
1o = GRS 261

Contents iTool Developer’s Guide

Chapter 1:
Overview

This chapter provides an overview of the IDL iTool Component Framework.

What areiTools? 8 AbouttheiToolsCodeBase............ 11
What is the iTools Component Framework? . 9 Skills Required to Use the iTools Component
About thisManual 10 Framework 13

iTool Developer’s Guide 7

8 Chapter 1: Overview

What are iTools?

IDL Intelligent Tools, or iToals, are applications written in IDL to perform avariety
of data analysis and visualization tasks. iTools share a common underlying
application framework, presenting afull-featured, customizable, application-like user
interface with menus, toolbars, and other graphical features. Several pre-defined
iTools are provided along with IDL; you can use these tools to explore and visualize
your data without writing any new code yourself. For information on using the
standard i Tools provided with IDL, see the iTool User’s Guide.

But iTools are more than just a set of pre-written IDL programs. Behind the iTool
system liesthe IDL Intelligent Tools Component Framework — a set of object class
files and associated utilities designed to allow you to easily extend the supplied
toolset or create entirely new tools of your own. This manual will help you
understand the i Tools Component Framework so that you can customize existing
iTools or create entirely new ones.

What are iTools? iTool Developer’s Guide

Chapter 1: Overview 9

What is the iTools Component Framework?

TheiTools component framework is a set of object class definitions written in the
IDL language. It is designed to facilitate the devel opment of sophisticated
visualization tools by providing a set of pre-built components that provide standard
features including:

» creation of visualization graphics

* mouse manipulations of visualization graphics

e annotations

¢ management of visualization and application properties

e undo/redo capabilities

e dataimport and export

e printing

e datafiltering and manipulation

e interface element event handling

In addition, the iTools component framework makesit easy to extend the system with
components of your own creation, allowing you to design atool to manipulate and
display your datain any way you choose.

Advantages of Using the Framework

If you are accustomed to creating user interfaces for your IDL applications using IDL
widgets, using the iTools component framework will shorten your development time
by providing much of the application interface via the standard component building
blocks. In many cases, you are freed entirely from the need to create your own
interface elements, handle widget events, and manage the display of data. Even when
your application calls for additional user interface elements, the framework
eliminates the need for you to manually create those elements that your application
has in common with the standard i Tool interface.

If you are accustomed to using IDL object graphicsin your applications, theiTools
component framework provides a streamlined way of working with the object
graphics hierarchy. Many tasks, such as management of object properties and
manipulation of the abject model, are handled automatically.

iTool Developer’s Guide What is the iTools Component Framework?

10 Chapter 1: Overview

About this Manual

TheiTool Developer’s Guide describes the IDL iTools component framework and
provides examples of its use. After reading this manual, you will understand how to
use the component framework to create your own intelligent tools.

This manual is divided into three parts:
Part I: Understanding the iTools Component Framework

This section describes the iTools component framework in conceptual terms, and
outlines some of the processes you will use in creating new tools using the
framework. While an understanding of the topics in this section may be beneficial as
you develop your own applications, a complete understanding of the way the
framework operatesis not required to begin building your own tools.

Part Il: Using the iTools Component Framework

This section walks you through the process of creating a new i Tool application, either
by extending an existing iTool or by building a new tool from scratch.

Part Ill: Modifying the iTool User Interface

This section discusses the process of adding your own interface elements to an iTool
application.

What this Manual is Not

This manual is not an API reference for the i Tools object classes. Reference
documentation for the iTool classes, methods, and propertiesislocated in the IDL
Reference Guide.

This manual is not a complete description of the object classes that constitute the
iTools component framework. We describe the object classes you will use to create
new iTools, but not necessarily the building blocks from which those classes are
constructed. If you desire a deeper understanding of how the component framework
functions than this manual provides, you can inspect the object class definition files,
which are provided in IDL . pr o source code format inthei t ool s/ f r amewor k
subdirectory of your IDL | i b directory.

See “ Documented vs. Undocumented Classes’ on page 11 for acomplete explanation
of our approach to documenting the iTool component framework.

About this Manual iTool Developer’s Guide

Chapter 1: Overview 11

About the iTools Code Base

TheiTools component framework iswritten aimost entirely in the IDL language. The
IDL code that implements both the component framework and al of the standard
iToolsincluded with IDL is available for you to inspect, copy, and learn from.

To inspect the iTools code, look inthel i b/ i t ool s subdirectory of your IDL
installation directory. The iTools code base is organized as follows:

* Inthelib/itool s directory you will find code that implements the i Tool
launch routines. These routines can be called directly at the IDL command line
to launch a specific iTool.

e Inthelib/itools/framework directory you will find the coreiTool object
class definitions and utility routines. The classes in this directory define how
the iTools operate; they are made available for your inspection, but they should
not be altered.

e Inthelib/itool s/ conponent s directory you will find derived iTool object
classes. The classes in this directory implement the non-core features of the
iTool toolset asincluded with IDL. You are encouraged to use these classesto
implement your own iTool functionality, either by subclassing from a derived
iTool object class or by modifying a copy of the class definition for a derived
class.

 Inthelib/itools/ui_w dgets directory you will find the IDL code that
creates an iTool user interface using IDL widgets. You may find it useful to
inspect some of these routines if you are creating a side panel or a dialog used
to collect parameter settings for an operation. See Chapter 10, “iTool User
Interface Architecture” for additional information on creating additional user
interfaces for an iTool.

Documented vs. Undocumented Classes

If youinspectthel i b/ it ool s directory and its subdirectories, you will notice that
there are many more classes included in the iTools component framework than are
documented in the IDL Reference Guide and in this manual. Our approach to
documenting the iTools code that isincluded with IDL is asfollows:

¢ |Tool launch routines for iTools included in the IDL distribution are
documented in the IDL Reference Guide. Use of the launch routines for the
pre-built iToolsis discussed in theiTool User’s Guide.

iTool Developer’s Guide About the iTools Code Base

12 Chapter 1: Overview

e ThecoreiTool component framework classes used to build individual iTools,
visualization types, operations, etc. are formally documented in the IDL
Reference Guide and discussed in detail in this manual. If an object class,
method, or property is necessary for the construction of anew iTool or
component of aniTooal, it isformally documented in the IDL Reference Guide
or in this manual. CoreiTool framework classes are located in the
l'i b/itool s/framework subdirectory of the IDL installation directory.

e Supporting iTool component framework classes — those used to implement
the documented component framework classes — are not formally
documented. As noted previoudly, the code for these classesis available for
inspection. Supporting iTool framework classes are located in the
l'i b/itool s/framework subdirectory of the IDL installation directory.

e Derived iTool classes — those used to implement individual iTools and their
features — are not formally documented. These classes are derived from the
formally documented classes, and as such can be understood by referring to the
formal documentation. Derived iTool framework classes are located in the
l'i b/itool s/ conponent s subdirectory of the IDL installation directory.

e iTool user interface routines are not formally documented. These routines use
standard IDL widget programming techniques, and as such can be understood
by referring to the IDL widget documentation. User interface routines are
locatedinthel i b/ i t ool s/ ui _wi dget s subdirectory of the|DL installation
directory.

Warning on Using Undocumented Features

While you are encouraged to inspect the iTools code, and to copy or subclass from
derived classes and user interface routines, be aware that classes and routines that are
not formally documented are not guaranteed to remain the same from one release of
IDL to the next. Keep the following points in mind when implementing your own
iTools:

« RSl will change undocumented supporting classes as necessary to improve the
iTools system.

¢ RSI may aso change undocumented derived classes to fix problems or add
functionality; in these cases, we will make every effort to preserve backwards
compatibility, but thisis not guaranteed.

If you create new iTool classes based only on the formally documented i Tool
interfaces, your tools should operate properly with future releases of IDL. If you base
your tools on undocumented derived classes, minor modifications may be necessary
to ensure future compatibility.

About the iTools Code Base iTool Developer’s Guide

Chapter 1: Overview 13

Skills Required to Use the iTools Component
Framework

TheiTools component framework consists of a set of IDL object classes,
supplemented by utility routines. If you are already familiar with the concepts of
object-oriented programming, or have written programs that use IDL object graphics,
you will find theiTools framework easy to understand and use. The framework
approach means that most of the details of creating a full-featured and usable
application are already taken care of, leaving you free to concentrate on how best to
manipul ate and visualize your data.

If you are familiar with procedural programming in IDL but new to object-oriented
programming, you will find devel oping i Tool s to be a gentle introduction to the topic.
TheiTools framework has been designed to alow IDL users with little or no
experience writing object-oriented programs to easily customize and extend the basic
iTool applications. While some familiarity with the concepts of object-oriented
programming is necessary to successfully develop iTools, you should be able to
create simple modifications of existing tools almost immediately, and more complex
customizations soon thereafter.

iTool Developer’s Guide Skills Required to Use the iTools Component Framework

14 Chapter 1: Overview

Skills Required to Use the iTools Component Framework iTool Developer’s Guide

Part I: Understanding
the ITools Component
Framework

Chapter 2:

ITool System
Architecture

This chapter describes the iTool component framework architecture.

OVEIVIEW ... 18 Registering Components 22
iTool Object Identifiers 19 iTool Messaging System 25
iTool Object Hierarchy 21 SystemResources.................... 28

iTool Developer’s Guide 17

18 Chapter 2: iTool System Architecture

Overview

TheiTool system architecture is designed to maintain a separation between the
functionality provided by an iTool and the graphical presentation layer that reveals
that functionality to an iTool user (the iTool user interface). Such a separation allows
for the creation of different user interfaces for the same underlying functionality;
while theinitial iTool user interface has been created using IDL widgets, it iseasy to
imagine using other technologies to create an interface to the underlying i Tool
functionality.

To support the goal of enabling different user interfaces for agiven set of iTool
functionality, theiTool architecture includes the following features:

¢ AdesigninwhichasingleiTool object (based on the IDLitTool class) contains
al non-interactive tool functionality. Similarly, asingleiTool object (based on
the IDLitUI class) contains all user interface functionality.

e Anobject identifier system that provides a platform-neutral way to identify
objects across process and machine boundaries. Additionally, the object
identifier system is designed to work with existing component technologies
such as COM and Java.

« A minimal connection between the non-interactive tool functionality and the
presentation layer. The tool architecture provides asmall set of highly abstract
methods that the tool and presentation layer use to communicate with each
other. This minimal connection means that the presentation layer needs only a
single object reference to the iTool object itself.

¢ A messaging system that allows one component to observe another, receiving
notification messages when the observed component changes in some way.

This chapter describes some of the core ideas of the iTool system: object identifiers,
the iTool system object and the object hierarchy it contains, the concept of
registration, and how information is passed between iTool components.

Overview iTool Developer’s Guide

Chapter 2: iTool System Architecture 19

ITool Object Identifiers

iTool object identifiers are simple strings that uniquely identify individual objects
within the hierarchy of iTool objects in much the same way that a computer file
system identifies files within a hierarchy of files. The object hierarchy (and, by
extension, the object identifiers) also describe where information about objectsis
made visible in the iTool user interface; see “iTool Object Hierarchy” on page 21 for
additional discussion of the iTool hierarchy and the iTool system object.

Besides providing afamiliar, user-readable way to identify objectsin the iTool
system, object identifiers also allow iTool developersto refer to an object without
having to maintain an actual object reference to that object. This ability to use a
lightweight string object to refer to a potentially “heavy” object in the iTool system
makes it possible to maintain a very loose coupling between the objects that
implement an iTool’s functionality and those that implement its user interface. While
theiToolsincluded in theinitial release of the iTool system do not rely on this loose
coupling between functionality and user interface, it allows for object access that can
cross process and machine boundaries, paving the way for the use of theiTool system
in more distributed environments.

Note
Object identifiers are not to be confused with object descriptors. See “ Object
Descriptors’ on page 20 for details.

Object identifier strings are assigned when an object classis registered with either an
individual iTool or with theiTool system object. See “Registering Components” on
page 22 for adiscussion of the registration process.

Identifiers can either be fully qualified, meaning that they depict the entire path from
the root iTool system object to the object being identified, or relative, meaning they
depict the path from the root of the current iTool. Fully qualified identifiers begin
with the*/” character, and refer to objectsthat are accessibleto all iTools that become
active during the lifetime of the iTool system object. Relative identifiers do not begin
with a“/" and refer to objects that are accessible only to the current i Tool.

For example, the identifier string
/ DATA MANAGER/ MY DATA

refersto an object named My DATA, located in the system-level DATA MANAGER
container. Because the identifier isfully qualified, the My DATA object isvisibleto
any iTool that is active during the i Tool session.

iTool Developer’s Guide iTool Object Identifiers

20

Chapter 2: iTool System Architecture

Similarly, the identifier string
OPERATI ONS/ FI LTERS/ MY FI LTER

refersto an object named My FI LTER, located in a sub-container of the iTool-level
OPERATI ONS container named FI LTERS. Because the identifier is relative, the
MY FI LTER object isvisible only to the current iTool.

Note
Object identifiers are stored as upper-case strings. Spaces are allowed.

Proxy ldentifiers

In some cases, you want the same abject to be located in multiple placesin the iTool
object hierarchy. For example, the Undo operation appears in two placesin the
standard i Tool user interface: under the Edit menu and on the toolbar. Rather than
duplicating the Undo operation object in each of those placesin the iTool object
hierarchy, we can use a proxy mechanism to register the same object instance with
multiple object identifiers. In the case of the Undo operation, the operation itself is
located in the EDIT subcontainer of the iTool’s OPERATIONS container, which
implies that the operation appears under the iTool’s Edit menu. A proxy (or alias) to
this object is created in the EDIT subcontainer of the iTool’s TOOLBAR container,
which places the operation on the toolbar as well. Only one instance of the Undo
object is created, but its action can be invoked from both the menu and the toolbar.

Proxy identifiers are assigned by the Register method for the object being proxied.
See “Registering Components” on page 22 for additional details.

Object Descriptors

Object descriptors are iTool objects that contain enough information about a given
object classto create an object of that class when necessary. In many cases, object
descriptors, rather than instances of the objects they create, are stored in the iTool
hierarchy; this approach allows object instances to be created only when needed.
Object descriptors al so manage instances of objectsthat can be re-used by the system,
avoiding the need to create a new instance of an object (such as an operation) each
timeitisused.

Casesin which an iTool developer will need to know about or use object descriptors
rather than object identifiers are very rare. We mention object descriptors here
because they are used extensively in the iTool object hierarchy to expose the
functionality of objects that are created as needed, rather than being created
automatically when the iTool is created.

iTool Object Identifiers iTool Developer’s Guide

Chapter 2: iTool System Architecture 21

ITool Object Hierarchy

TheiTool system isacollection of object class instances organized in a hierarchy of
container objects. The hierarchy serves both to organize the numerous object
instances and to display information about the objects in the iTool user interface. In
most cases, an object’s location in the iTool hierarchy controls where and how the
object ismade visible in the user interface.

For example, the Rotate operation object is stored in the ilmage iTool’s object
hierarchy with the object identifier

OPERATI ONS/ OPERATI ONS/ ROTATE
From this identifier we can deduce two things:

1. The Rotate operation object is stored in the iTool’s object hierarchy in the
OPERATIONS container within the OPERATIONS container.

2. TheRotate operation will be displayed in theiTool’swidget interface under the
Operations menu.

iTool System Object

TheiTool system object contains and provides a single point of accessto all objects
managed by theiTool system. Only one instance of the iTool system aobject can exist
inagiven IDL session; it is created automatically when any iTool is created.

Note
AsaniTool developer, thereis no need for you to create or otherwise interact with
the system object yourself. This discussion of the structure of the system object is
included solely to help you understand the organization of iTool objects.

TheiTool system object is a subclass of the IDLitContainer object, which provides
functionality to manage a hierarchy of container objects viatheir object identifiers.

iTool Developer’s Guide iTool Object Hierarchy

22 Chapter 2: iTool System Architecture

Registering Components

Registering an object class links the file containing the IDL code that defines the
object (an iTool, avisualization type, an operation, etc.) with the object identifier.
Objects can be registered either with the iTool system object (in which case their
identifiers are fully qualified) or with an individual iTool class (in which case their
identifiers are relative to the iTool or to a specific container within the tool).

When an object is registered, it is not immediately instantiated. Instead, the
information required to create the object is saved in an object descriptor and placed in
the appropriate location in the iTool hierarchy. Later, when the functionality
contained in the object is needed, the object descriptor either instantiates the object or
provides areference to an existing instance of the object.

Registration Methods

Objects are registered using the ITREGISTER procedure (to register the object with
the iTool system object) or by calling a Register method on an individual iTool
component object.

Registering Objects with the System Object

Individual iTools, visualization types, and user interface types can be registered with
theiTool system object. Of these:

e individual iTools must be registered with the system object before they can be
created and displayed.

e visudlization types may be registered with the system object, but can also be
registered with aniTool. Visualization typesthat are registered with the system
object will be availableto all iToolsviathe Insert Visualization dialog.

e user interface types must be registered with the system object; however,
creation of new user interfacesis arare and complex occurrence.

To register an object with theiTool system object, use the ITREGISTER procedure.
See*ITREGISTER” inthe IDL Reference Guide manual for details and “ Registering
aNew Tool Class’ on page 78 for an example using ITREGISTER.

Registering Objects with an iTool

Visualization types, operations, manipulators, file readers, and file writers can be
registered with anindividual iTool. Of these, all must be registered with an individual

Registering Components iTool Developer’s Guide

Chapter 2: iTool System Architecture 23

iTool except for visualization types, which may have been registered with the i Tool
system object.

Note
Many operations, manipulators, file readers, and file writers are registered by the
IDLitToolbase class. If you create a new iTool based on this class, these features
will be registered automatically. See “ Subclassing from the IDLitToolbase Class’
on page 75 for details.

Tip
If you want some, but not al, of the functionality exposed by the IDLitToolbase
class, you may find it useful to subclass from IDLitToolbase and unregister one or
more features. See the sections on unregistering items in the chapters devoted to
creating operations, file readers, and file writers.

To register an object with an individual iTool, use one of the Register methods of the
IDLitTool class. Register methods exist for each type of object that can be registered
(IDLitTool::RegisterOperation for operations, for example). A call to aregistration
method looks something like this

self -> Regi sterObject, ObjectNanme, bject_C ass_Nane

where Object is one of the object types that can be registered (Visualization,
Operation, Manipulator, FileReader, or FileWriter), ObjectName isthe string you will
use when referring to the object, and Object_Class Nameisastring that specifiesthe
name of the class file that contains the object’s definition.

See the Register methods under “IDLitTool” in the IDL Reference Guide manual for
additional details, and “ Registering a Visualization Type” on page 110, “Registering
an Operation” on page 153, “ Registering a File Reader” on page 177, and
“Registering a File Writer” on page 201 for examples.

Specifying Object Identifiers

You can use the IDENTIFIER keyword to any of the Register methods to specify an
object identifier for the registered abject, and thus specify the object’s location in the
iTool object hierarchy and in the user interface. If you do not specify avalue for the
IDENTIFIER keyword, a suitable object identifier will be constructed based on the
type of object being registered and the specified ObjectName.

Proxy Registration

You can also register an object as a proxy (or alias) to another object that has already
been registered. Registering an object as a proxy places the proxy object in the iTool

iTool Developer’s Guide Registering Components

24 Chapter 2: iTool System Architecture

hierarchy in the specified place, but actually calls the original object when a user
requests the proxied object. To register a proxy object, specify an object identifier
string as the value of the PROXY keyword to the Register method. For example, the
following call to the RegisterOperation method places a proxy to the Undo object
stored in theiTool hierarchy under OPERATI ONS/ EDI T/ UNDOIn the hierarchy under
TOOLBAR/ EDI T/ UNDC:

self -> RegisterQperation, 'Undo', PROXY = 'Qperations/Edit/Undo', $
| DENTI FI ER = ' Tool bar/ Edi t / Undo'

Registering Components iTool Developer’s Guide

Chapter 2: iTool System Architecture 25

ITool Messaging System

Notifications are messages sent from one iTool component to one or more observer
components. The iTool messaging system provides a unified way for components to
notify each other of important changes; it is quite general, and can be used to send
messages related to any type of change. Some exampl es:

« Visualizations send notifications when components of the visualization are
selected or unselected.

* Notifications are issued when the user changes the value of a property. All
visualizations or operations that depend on the value of that property are
automatically notified.

Note
Messaging functionality is provided mainly by the IDLitTool and IDLitUI objects,
using the interface defined by the IDLitIMessaging object.

In many cases, the iTool messaging system is transparent to you as an i Tool
developer; you may never need to create code that uses the messaging system. The
main exception to thisruleis the creation of user interface panels (discussed in
Chapter 13, “Creating a User Interface Panel”), but there may be other instancesin
which the notifications sent by theiTool framework itself do not meet your needs and
must be augmented by your own message generation and handling code.

Sending Notifications

To send a notification, an iTool component calls the IDLitIMessaging::DoOnNotify
method, providing the object identifier of the component that is sending the
notification, a string that uniquely identifies the message being sent, and any value
associated with the message. The method call looks like:

bj -> DoOnNotify, 1dOriginator, |dMessage, Val ue

where Obj is the object calling the DoOnNotify method, IdOriginator istheiTool
component object identifier string of the component that changed, IdMessageisa
string that uniquely identifies the change, and Value is the value associated with
|dMessage.

The DoOnNotify method is available to most iTool components, since all
components subclass from the IDLitIMessaging class either directly or indirectly.

See“IDLitIMessaging::DoOnNotify” in the IDL Reference Guide manual for details.

iTool Developer’s Guide iTool Messaging System

26

Chapter 2: iTool System Architecture

The IdOriginator argument is generally the object identifier of an iTool component
object, but it can be any string value.

Notification Messages

The value of the |dMessage argument to the DoOnNotify method is a string val ue that
must uniquely identify the message being sent. iTool components and callback
routines that process notification messages use the value of the IdMessage string to
determine what action to take when a message arrives from an observed component.

When you call the DoOnNotify method yourself, use caution in choosing the value of
the IdMessage string. If the string you choose conflicts with a message being sent by
another iTool component, the message-handling routines may be activated at the

wrong time.

Standard iTool Messages

Thefollowing isalist of notification messages sent by components that are part of
the standard i Tool distribution:

Message String

Meaning

SELECTED
UNSELECTED

The selection state of an item being watched had
changed. Value contains the object identifier of the
component whose selection changed.

SELECTIONCHANGED

The selected item within the current iTool changed.
Value contains and empty string.

ADDITEMS A call to the Add, Move, or Remove method of an

MOVEITEMS IDLitContainer that supports the IDLitIMessaging
interface is made. Value contains the object identifier

REMOVEITEMS of the item that was added, moved, or removed.

SETPROPERTY The value of a property has been changed on a
component. In some cases, Value contains the
identifier of the property that changed.

SENSITIVE The SENSITIVE property of a component has

UNSENSITIVE changed. Value contains and empty string.

Table 2-1: Standard iTool Messages.

iTool Messaging System

iTool Developer’s Guide

Chapter 2: iTool System Architecture 27

Observers

To watch for notifications from an iTool component, an iTool component calls the
IDLitIMessaging::AddOnNotifyObserver method, providing the object identifier of
the component that is watching and the object identifier of the object being watched
as arguments. The method call looks like:

bj -> AddOnNoti fyQoserver, |dCbserver, |dSubject

where Obj is the object calling the AddOnNotifyObserver method, 1dObserver isthe
iTool component object identifier string of the component that is watching for
notification messages, and IdSubject is a string value identifying the item that
IdObserver isinterested in. Thisis normally the object identifier of an iTool
component object, but it can be any string value.

Note
When writing a user interface panel, the |dObserver argument contains the object
identifier of a user interface adaptor created by a call to the RegisterWidget method
of the IDLitUI class. See “Creating a Ul Panel Interface” on page 243 for details.

iTool Developer’s Guide iTool Messaging System

28 Chapter 2: iTool System Architecture

System Resources

This section contains information on resources used by the iTool system.
lcon Bitmaps
Some i Tool components have associated icons. Icons for iTool components are

displayed in the tree view of a browser window.

Bitmaps used asiconsin the iTool system must be either . bnp or . png files. The
images contained in icon bitmap files can be either True Color (24-bit color) images
or paletted (8-bit color) images.

Note
There are different requirements for bitmap images that will be displayed on button
widgets. See “Using Button Widgets’ in Chapter 27 of the Building IDL
Applications manual for details.

By default, bitmap filesfor icons used by theiTool system are stored in the bi t maps
subdirectory of ther esour ce subdirectory of the IDL distribution. If anicon’s
bitmap fileislocated in this directory, specify the base name of the file— without the
filename extension — as the value of the ICON property of the component. For
example, to usethefilear r ow. bnp, located in ther esour ce/ bi t maps
subdirectory of the IDL distribution, specify the value of the ICON property as
follows:

ICON = "arrow

If you include the filename extension when setting the ICON property, the iTool
system assumes that the specified value isthe full path to the bitmap file. For
example, to usethefileny_i con. png, stored in the directory / home/ nydi r asan
icon, specify the value of the ICON property as follows:

I CON = '/ hone/ nydi r/ my_i con. png'

If you are distributing your iTool code to others, you may want to specify a path
relative to the location of your code for the icon bitmap files. To retrieve the path to
the file containing code for a given routine, you could use code similar to the

following:
Use ny own |con bitmap
i conNanme = 'ny_i con. png'
routi neName = 'nyVisual i zati onType__defi ne'

routinel nfo = ROUTI NE_I NFQ(routi neNane, / SOURCE)
path = FlI LE_DI RNAME(routi nel nfo. path, /MARK DI RECTORY)

System Resources iTool Developer’s Guide

Chapter 2: iTool System Architecture 29

i conPath = path + iconName

This code uses the ROUTINE_INFO function to retrieve the path to the file specified
by the string r out i neNane. It then extracts the directory that contains the file using
the FILE_DIRNAME function, and concatenates the directory name with the name of
the bitmap file contained in the string i conNare.

Note
The routine specified by routineName must have been compiled for the
ROUTINE_INFO function to return the correct value.

Including this code in aroutine and setting the ICON property equal to the variable
i conPat h provides a platform-independent method for locating bitmap filesin a
directory relative to the directory from which your iTool code was compiled.

If the value of the ICON property is hot set and the iTool system needsto display an
bitmap to represent a component, thefiler esour ce/ bi t maps/ new. bnp is used.

Help System

TheiTool system allows the user to select “Help on Selected Item” from the Help
menu (or, in the case of the Operations and System Preferences browsers, from the
context menu) to display online help for the selected item.

Note
Helpfor iTool itemsis provided viaacall tothe IDL ONLINE_HELP procedure. It

is beyond the scope of this chapter to discuss the creation of help files suitable for
display by ONLINE_HELP; please see Chapter 19, “Providing Online Help For
Your Application” in the Building IDL Applications manual for additional
information.

Information about the topic to be displayed by ONLINE_HEL P is contained in an
XML format filenamedi dl i t hel p. xm , located inthel i b/ it ool s/ hel p
subdirectory of the IDL distribution.

The format for ahelp entry is:

<Topi c>
<Keywor d>hel pKeywor d</ Keywor d>
<Li nk type="MSHTMLHELP" >cont ext Nunber </ Li nk>
<Link type="PDF" book=bookNane>pdf Desti nati on</Li nk>
<Li nk type="HTM.">htm Fi | e</ Li nk>
</ Topi c>

Where;

iTool Developer’s Guide System Resources

30

Chapter 2: iTool System Architecture

« helpKeyword istheiTool object class name of the selected object. There can be
multiple <keywor d> entities for agiven <Topi ¢>, but they must al precede
any <Li nk> entities.

e contextNumber is an integer used by the Microsoft Windows HTMLHelp
viewer to select atopic from the specified . chmor . hl p file.

e pdfDestination isastring used by the Adobe Acrobat Reader software to select
atopic from the specified . pdf file.

* htmlFileisastring that specifies the name of an HTML file to display in the
default browser.

* bookNameis an optional attribute that specifies the name of the file that
contains the HTMLHelp contextNumber or the pdfDestination specified as the
value of the <Li nk> entity.

Thet ype attribute of the <Li nk> entity isrequired, and can have one of the
following values:

« MSHTMLHELP
- PDF
« HTML

If morethan one <Li nk> entry is present, IDL will choose which to display based on
the platform; on Windows platforms, the <Li nk> entity with the type attribute set to
MSHTMLHELP will be used, on Unix platforms, the <Li nk> entity with the type
attribute set to PDF will be used. If the appropriate platform-specific <Li nk> is not
present, thefirst <Li nk> entity of atypethat can be displayed on the current platform
will be used.

System Resources iTool Developer’s Guide

Chapter 3:

Data Management

This chapter describes the iTool data management system.

Overview 32
iTool DataManager 33
iTool DataTypescovvivnnnn.. 34
iTool DataObjects 36

iTool Developer’s Guide

Predefined iTool DataClasses 38
Parameters 41
DataTypeMatching 43
DataUpdate Mechanism 45

31

32 Chapter 3: Data Management

Overview

TheiTools system is designed to turn raw data— numbers stored in computer
memory — into visualizations that convey information to the viewer. Using data to
create avisual display requires some way to route each piece of datato the
appropriate part of the algorithm that displaysit. In the terminology used by the iTool
system, each dataitem must be associated with a parameter of a visualization.

TheiTools system manages the relationship between data and the visualizations that
display data viatwo mechanisms: iTool data types and parameter data types. The
iTool datatypeisaproperty of an IDLitDataobject (or of an object that inherits from
the IDLitData object); it can be any valid scalar string. iTool data types are described
in detail in “iTool Data Types’ on page 34. Parameter data types are assigned when a
visualization object registers its parameters with the iTool system; they also can be
any valid scalar string. Parameter data types are described in “ Parameters’ on

page 41.

Note
iTool operations, which do not support the concept of parameters or parameter
names, determine whether they can act on a given data object solely on the basis of
theiTool datatype.

TheiTool datatype and parameter data types are used to match up data objects with
visualizations that need data to display. See “Data Type Matching” on page 43 for a
description of how matches are made.

This chapter describes data-management tasks undertaken by the iTool devel oper.
Interactive users manipulate data using a graphical interface known astheiTool Data
Manager; this interface allows the user to select and import data items into the iTool
system and to manually associate data items with parameters. See Chapter 2,
“Importing and Exporting Data”’ in theiTool User’s Guide manual for a complete
description of the Data Manager and its use.

Overview iTool Developer’s Guide

Chapter 3: Data Management 33

ITool Data Manager

Dataimported into the iTool system is stored in a separate data object hierarchy that
isavailableto all iTools. When adataitem is placed in the data manager hierarchy,
whether interactively by auser or automatically by some operation of an iTool, the
dataitem isimmediately visible to all iTools. The hierarchy of the data manager
reflects the hierarchy of the data containers (IDLitDataContainer and
IDLitParameterSet objects) it holds.

Unless you are creating new data items within an iTool operation, it is unlikely that
you will need to add data to (or remove data from) the data manager yourself.
Addition of dataitemsto the data manager is handled automatically if datais
imported viaany of the standard i Tool dataimport mechanisms (choosing Open from
the File menu, or clicking an Import button in the Data Manager user interface).

Adding Data to the Data Manager

To add an IDLitData, IDLitDataContainer, or IDLitParameterSet object to the data
manager, call the IDLitContainer::AddByldentifier method on your iTool object with
theidentifier string' / Dat a Manager' (note that identifier strings can include
spaces, as between the words “Data” and “Manager”):

; Create an |DLitDat athj ect
oData = OBJ_NEW ' IDLitData', nyData, |DENTIFIER = 'Cool Data')

; Get a reference to the current iTool object.

; (The CGetTool nethod is inherited fromthe |DLitl Messaging
; class.)

oTool = self -> GetTool ()

; Add the data object to the data manager
oTool -> AddByldentifier, '/Data Manager', oData

This results in the oData data object being stored in the data manager with the
identifier ' / Dat a Manager/ Cool Data'.

See “iTool Object Identifiers’ on page 19 for additional information on identifier
strings.

Removing Data from the Data Manager

To remove data from the data manager, call the IDLitContainer::RemoveByldentifier
method on your iTool object with the full identifier string used to add the data object:

oTool -> RenoveByldentifer, '/Data Manager/Cool Data'

iTool Developer’s Guide iTool Data Manager

34 Chapter 3: Data Management

iITool Data Types

Every iTool dataitem (IDLitData object or IDLitDataContainer object) has an
associated i Tool data type. TheiTool datatype of a dataitem is specified viathe
TY PE property of the data object, which can contain any scalar string.

Note
Do not confuse iTool data types with IDL’s inherent data types — integers and
floating-point integers of various sizes and precisions, strings, structures, pointers,
and object references. iTool data types are used only by the iTool system when
matching data objects with the parameters expected by avisualization or operation.
IDL datatypes describe how avalue or values are stored in computer memory. i Tool
data types need not correspond directly to an IDL datatype.

iTool datatyping alows the iTool system to match up data objects with visualization
parameters even if the data objects have not been explicitly associated with the
visualization parameters. Similarly, an iTool operation may apply only to specific
forms of data; the iTool datatyping mechanism allows an operation to “see” only data
of the appropriate type.

Composite Data Types

Because I DLitData objects can be collected in IDLitDataContainer objects (and, by
extension, I DLitParameterSet objects), it is possible that data objects with different
iTool data types will be collected in asingle container. The iTool data typing system
allows these heterogeneous data sets to be named with unique i Tool data types that
reflect the contents of the container. For example, you might define a data container
that contains IDLitData objects with the iTool data types of IDLVECTOR and
IDLARRAY 2D with your own iTool datatype, suchasMY_PLOT.

Data Types of iTool Components

Since theiTool datatype of adataitem can be any scalar string value, it isup to the
iTool developer to ensure that a data object assigned a given iTool datatype contains
the data expected by visualizations and operations that accept that type.

Visualizations or operations that accept an iTool datatype are written to act on data
items that have specific IDL datatypes (or collections of specific IDL datatypes, in
the case of compound data types). If the data object contains datain aformat not
expected by the visualization or operation, errors or unexpected behaviors may result.

iTool Data Types iTool Developer’s Guide

Chapter 3: Data Management

35

Table 3-1 liststhe iTool data types defined by the standard i Tools included with IDL.
You should avoid using these iTool data type names when defining data objects that
do not match the contents listed here; if data objects with different contents are given
these iTool data type names, portions of the standard i Tool functionality may no

longer function correctly.

iTool Data Type

Contents

IDLARRAY 2D A two-dimensional array of any IDL datatype.
IDLARRAY 3D A three-dimensional array of any IDL datatype.
IDLIMAGE A composite data type that includes

IDLIMAGEPIXELS and IDLPALETTE data.

IDLIMAGEPIXELS

One or more two-dimensional image planes.

IDLOPACITY_TABLE

A 256-element byte array

IDLPALETTE A 3 x 256-element byte array

IDLPOLYVERTEX A composite data type that contains a vector of
vertex data and a vector of connectivity data.

IDLVECTOR A vector of any IDL datatype.

IDLVERTEX A vector containing vertex data.

Table 3-1: iTool data types used by the standard iTools shipped with IDL.

In addition to avoiding use of the standard i Tool data type names for new data types,
you should consider using unique naming schemes for iTool data types you create.
Choosing your own iTool data type naming scheme will help to avoid conflicts with
iTools built by others. Thisis especially important if you intend to share your iTool
code with other IDL users. Choosing aunique prefix or suffix for your iTool datatype
names should guard against most namespace collisions.

iTool Developer’s Guide

iTool Data Types

36

Chapter 3: Data Management

ITool Data Objects

Each item of dataused by aniTool must be encapsulated in an IDLitData object. Data
objects can be grouped into collections using the IDLitDataContainer class or its
subclass, IDLitParameterSet.

Data Objects

IDLitData objects can hold dataitems of any IDL datatype. The IDLitData class
providesiTool datatyping and data change notification functionality, and when
coupled with the IDLitDataContainer object forms the base element for the
construction of composite data types.

IDLitData objects implement the i Tools notifier interface, which provides a
mechanism by which observers of a data item can be alerted when the state of the
information contained in the data object changes. See “ Data Update Mechanism” on
page 45 for details on the notification system.

Data objects are created using standard IDL object-creation syntax. For example, to
create a data object that contains a vector of data:

; Create a data vector containing 10 random val ues
nmyDat a = RANDOMJ(seed, 10)

; Create a new data object fromthe vector.

oData = OBJ_NEW' | DLi t Dat al DLVector', nyDat a)

The IDLitDatal DLVector classis a subclass of IDLitData designed to hold vector
data. See “IDLitData’ in the IDL Reference Guide manual for a complete description
of the data object, its methods, and its properties.

Data Containers

IDLitDataContainer objects can hold any number of IDLitData or
IDLitDataContainer objects. This ability to organize datainto object hierarchies
allows for the creation of composite data types.

Data container objects are created using standard IDL object-creation syntax, and
individual data objects are included in the data container viaacall to the
IDLitContainer::Add method. For example, the following statements create a new
data container and add the data object created in the previous section:

; Create a data contai ner

oDat aCont ai ner = OBJ_NEW' | DLi t Dat aCont ai ner"')
; Add a data object.

oDat aCont ai ner -> Add, oData

iTool Data Objects iTool Developer’s Guide

Chapter 3: Data Management 37

In this example we do not specify an iTool datatype for the data container object

itself.

Tip
Often, you will organize data using a subclass of the IDLitDataContainer class: the
IDLitParameterSet.

See “IDLitDataContainer” in the IDL Reference Guide manual for acomplete
description of the data container object, its methods, and its properties.

Parameter Sets

The IDLitParameterSet class is a specialized subclass of the IDLitDataContainer
class that provides the ability to associate parameters with the contained IDLitData
and IDLitDataContainer objects. This association allows the iTool developer to
package a set of data parameters in a single container, which is then provided to the
iTools system for processing and display. See “IDLitParameterSet” in the IDL
Reference Guide manual for a complete description of the parameter set object, its
methods, and its properties.

Note
Do not confuse parameter sets, which are containers for data objects, with
parameters, which define how datais used by avisualization object. Parameters are
described in “ Parameters’ on page 41.

Using a parameter set object is very similar to using a data container object. The
parameter set itself is created using standard IDL object-creation syntax. The
parameter set object allows for the association of a parameter with each added data
object. For example, the following statements create a new parameter set and add the
data object created in the previous section, assigning a parameter:

; Create a paraneter set object

oPar aneter Set = OBJ_NEW' | DLi t Par anet er Set ')

; Add a data object, assigning a paraneter

oPar aneter Set -> Add, oData, PARAMETER _NAME = 'Y data'

iTool Developer’s Guide iTool Data Objects

38 Chapter 3: Data Management

Predefined iTool Data Classes

TheiTool system distributed with IDL includes a number of predefined data classes.
The predefined classes are subclasses of the IDLitData class, each performs
initialization steps that are commonly used when creating data objects that contain
data of specific composite data types. Some of the predefined data classes create data
sub-containers to hold associated data objects, and some register properties
associated with the data.

Note
The predefined i Tool data subclasses are provided as aconvenience. You can aways
create a generic IDLitData object rather than using one of the predefined classes.

You can create objects of these data classesin the same way you create ageneric data
object: by calling the OBJ_NEW function and specifying the appropriate class name.
You can aso create new specialized data classes based on one of the predefined
classes. Dataclasses arellocated inthel i b/ i t ool s/ conponent s subdirectory of
the IDL directory.

IDLitDatalDLArray2D

Creates an IDLitData object of whose TY PE property isset to IDLARRAY 2D. Used
to store atwo-dimensional array of any IDL datatype.

Registered Properties
¢ None
Data Sub-containers

* None

IDLitDatalDLArray3D

Creates an IDLitData object of whose TY PE property isset to IDLARRAY 3D. Used
to store a three-dimensional array of any IDL datatype.

Registered Properties
¢ None
Data Sub-containers

* None

Predefined iTool Data Classes iTool Developer’s Guide

Chapter 3: Data Management 39

IDLitDatalDLImage

Creates an IDLitData abject of whose TY PE property is set to IDLIMAGE. Used to

store two-dimensional image data. Images can be constructed from multiple image
planes.

Registered Properties
* INTERLEAVE
Data Sub-containers

¢ AnIDLitDatal DL Palette object named “Palette” that contains palette
information provided as an argument to the Init method.

e AnIDLitDatal DLImagePixels object named “Image Planes’ that contains the
image data provided as an argument to the Init method.

IDLitDatalDLImagePixels

Creates an IDLitData object of whose TY PE property is set to IDLIMAGEPIXELS.
Used to store the raw image data (pixels).

Registered Properties
* INTERLEAVE
Data Sub-containers

* None

IDLitDatalDLPalette

Creates an IDLitData object of whose TY PE property isset to IDLPALETTE. Used
to store palette data.

Registered Properties
* None
Data Sub-containers

* None
IDLitDatalDLPolyvertex

Creates an IDLitData object of whose TY PE property is set to IDLPOLY VERTEX.
Used to store vertex and connectivity lists suitable for use with the IDLgrPolygon and
IDLgrPolyline objects.

iTool Developer’s Guide Predefined iTool Data Classes

40

Chapter 3: Data Management

Registered Properties
* None
Data Sub-containers
* AnIDLitDataobject named “Vertices’ that contains the vertex list.
« AnIDLitData object named “Connectivity” that contains the connectivity list.

IDLitDatalDLVector

Createsan |IDLitData object of whose TY PE property isset to IDLVECTOR. Used to
store a one-dimensional array of any IDL datatype.

Registered Properties
* None
Data Sub-containers

* None

Predefined iTool Data Classes iTool Developer’s Guide

Chapter 3: Data Management 41

Parameters

Parameters represent data items used in awell-defined way by an algorithm that is
computing aresult. In the scheme of the iTools, parameters are the raw material fed to
visualization objects — the IDL routines that create visual displays.

For example, a visualization object that creates a simple line plot might require two
parameters: vectors of dependent and independent data values. These two vectors
would be passed to the routines within the visualization object for processing, and the
result would be displayed in the iTool window.

When avisualization object is created, it registers one or more parameters with the
iTool system. Each parameter has a parameter name and can be of one or more i Tool
data types. Parameter names are used to route the individual data itemsto the correct
routines within the visualization object. See Chapter 6, “ Creating a Visualization” for
more on creating visualization objects.

Note
Do not confuse parameters, which define how datais used by avisualization object,
with parameter sets, which are containers for data objects. Parameter sets are
described in “ Parameter Sets’ on page 37.

Parameter Names

Each parameter registered by avisualization is given a parameter name. The
parameter nameis a scalar string, and its scope isthe visualization by which it is
registered. Different visualizations can register parameters that have different
properties using the same parameter name.

Parameter Data Types

Each parameter registered by avisualization is associated with one or moreiTool data
types by setting the TY PES property. The value of the TY PES property can be a
scalar string or astring array; asingle parameter can be associated with multiple data
types. See“iTool Data Types’ on page 34 for more on iTool data types.

Registering Parameters

Parameters are registered when avisualization is created; that is, in the Init method of
an iTool visualization class. To register a parameter, call the RegisterParameter

iTool Developer’s Guide Parameters

42

Parameters

Chapter 3: Data Management

method of the IDLitParameter class (of which iTool visualization classes are a
subclass):

sel f -> Regi sterParaneter, ParnmaneterName, $
TYPES = [' DataTypel', ..., 'DataTypeN]

where ParameterName is a string that defines the name of the parameter and the
TYPES keyword is set equal to astring or array of strings specifying theiTool system
data types the parameter can represent. (See “iTool Data Types’ on page 34 for
information on iTools data types.)

A typical parameter registration call looks like the following:
sel f ->Regi sterParaneter, 'Y, /INPUT, TYPES='I|IDLVECTOR , /OPTARCET

Here, the string argument Y is the name of the parameter being registered. The
INPUT keyword specifiesthat Y is an input parameter (specified by the method’s
caler), the TY PES keyword specifiesthat Y isavector, and the OPTARGET keyword
specifies that operations can be performed on the Y vector.

Additional keywords can be set in the call to RegisterParameter. See the
documentation for “IDLitParameter::RegisterParameter” in the IDL Reference Guide
manual for additional details.

iTool Developer’s Guide

Chapter 3: Data Management 43

Data Type Matching

To understand how the iTool data type matching system works, consider the
following:

« When avisualization is created, it registers one or more parameters, assigning
aparameter name and one or more iTool data types to each.

¢ When adata object isimported or created by aniTool, it is assigned one or
moreiTool datatypes.

« When aparameter set object is created to contain data objects, each data object
can optionally be assigned one or more parameter names.

Now assume that an iTool user requests that a particul ar visualization be created from
aparticular collection of data objects, which are stored in aparameter set object. The
iTool system will do the following:

1. Retrieve the parameter name and i Tool datatypes registered for the
visualization’sfirst parameter.

2. If the parameter set object contains a data object whose Parameter Name
matches the parameter name of the visualization’s first registered parameter,
use that data object as the data for the visualization parameter.

3. If the parameter set object does not contain a data object with a matching
Parameter Name, check the parameter set for data objects for which the
Parameter Name property is not set. If there are no data objects without
Parameter Names, no data is associated with the visualization parameter.

4. Check theiTool datatypes of the data objects without Parameter Names. If a
data object whose iTool data type matches the list of registered data types for
the visualization parameter isfound, use that data object as the data for the
visualization parameter. If no data objects match any data types, no datais
associated with the visualization parameter.

5. Repeat until al registered visualization parameters have been either popul ated
with data, skipped, or there are no more data objects to supply data.

Note
Parameter name matching is done in a case-insensitive fashion. If aparameter is
registered with the parameter name “MyParameter” and a data object hasits
Parameter Name property set to “myParameter”, the two will match.

iTool Developer’s Guide Data Type Matching

44

Chapter 3: Data Management

The Figure 3-1 illustrates this process as a flow diagram.

Retrieve the parameter name
and list of data types from a
registered parameter.

Lai

Is there a
data object with
the same parameter
name?

Get next

parameter
fes

!

Associate data object with
the parameter name.

Are there

Are there
data objects with
no parameter
name?

Yes

Is there a data
object that matches the
parameter data
type?

more parameters?

Mo

Create Visualization

Figure 3-1: Data type matching algorithm used by iTools.

Data Type Matching

iTool Developer’s Guide

Chapter 3: Data Management 45

Data Update Mechanism

When the data contained in a data item changes (usually as the result of the
application of a data-centric operation), all visualizations that depend on that data
item are automatically notified of the change viaacall to the visualization object’s
OnDataChangeUpdate method. (See “ Creating an OnDataChangeUpdate M ethod”
on page 105 for details.)

The data update mechanism is automatic; if you have assigned iTool datatypes (and,
optionally, parameter names) to your data objects, the data matching mechanisms of
the IDLitParameter interface will ensure that updates happen when necessary. Unless
you have modified core iTool functionality, you do no need to handle data change
updates yourself.

iTool Developer’s Guide Data Update Mechanism

46

Data Update Mechanism

Chapter 3: Data Management

iTool Developer’s Guide

Chapter 4:

Property Management

This chapter describes the iTool property interface.

About the PropertiesInterface 48
Property DataTypes 51
Registering Properties 54
Property Identifiers 57

iTool Developer’s Guide

Property Attributes 58
Property Aggregation 61
Property Update Mechanism 63
Properties of theiToolsSystem 64

47

48

Chapter 4: Property Management

About the Properties Interface

Object properties are used to store settings and values that relate to visualizations,
data, and other components of aniTool. The iTools system presents a graphical
property sheet interface to tool users; see * Property Sheets’ in Chapter 3 of the iTool
User’'s Guide manual for a description of the property sheet interface. As atool

devel oper, you can manage individual property values, aswell asthe property set that
isvisible to users of your application, programmatically.

Note
In most cases, you do not need to manage updates to visualizations or data that
result from a user’s modifications to values in a property sheet. See “Property
Update Mechanism” on page 63 for details.

What is a Property?

A property isavalue that is associated with an object instance. Examples of property
values commonly associated with iTool objects are Boolean True/False flags, text
strings, color values stored as RGB triplets, and integer and floating point values. For
example, aplot visualization object might have a Color property that definestheline
color as an RGB triplet, aLine thickness property that defines the thickness of the
line drawn as an integer value in pixels, and a Name property that defines how the
plot isreferred to in iTool browser windows.

Properties vs. Preferences

In the case of objects that have a visual representation (plots, annotations, surfaces,
axes, etc.), properties apply to asingle instance of an object. When a new instance of
the same type of object is created, any property changes applied to thefirst object are
not applied to the second. For example, if you change the color of aplot line to red,
subsequent plot lines will still be created with the default line color.

In the case of non-visual objects (operations, file readers and writers, and
manipulators) only one instance of the object is created no matter how many times
the object is requested. As aresult, properties set on these objects will “stick” until
changed again. For example, if you change the value of the Width property of the
Smooth operation, the property will retain the value you set until you changeit again
or close that i Tool.

Finally, properties that apply to al iTools and which are preserved between i Tool
sessions are known as preferences. Preferences include default values for properties

About the Properties Interface iTool Developer’s Guide

Chapter 4: Property Management 49

of visual objects (default line style, colors, etc.), and default properties for file
readers, and file writers.

How are Properties Displayed?

Any iTool object can have properties. Properties are aways displayed viathe iTool
property sheet interface, which usesthe IDL WIDGET _PROPERTY SHEET function
to present property names and values in a columnar display. The way the property
sheet interface is displayed to i Tool users depends on the type of object for which
properties are being displayed.

e For visualization objects (any graphical item that appearsin the iTool
window), the property sheet can be displayed by double-clicking on an itemin
the iTool window, by selecting Properties from the window context menu, or
by selecting Visualization Browser from the Window menu.

« For operations, the property sheet can be displayed by selecting Oper ations
Browser from the Oper ations menu.

« For system preferences, the property sheet can be displayed by selecting
Preferences from the File menu.

Setting and Retrieving Property Values

iTool property values are set and retrieved like all object property values, via
SetProperty and GetProperty methods. See “1DLitComponent:: SetProperty” and
“IDLitComponent::GetProperty” in the IDL Reference Guide manual for details, but
remember that your own object classes will be responsible for implementing these
methods and handling the actual property values. See the chaptersin “Using the
iTools Component Framework” for examples of GetProperty and SetProperty
methods.

Property Data Types

While object properties can contain any value that can be stored in IDL, theiTool
property sheet interface (based on the WIDGET_PROPERTY SHEET routine) will
only display properties of nine pre-defined property data types. (See “Property Data
Types’ on page 51 for descriptions of the pre-defined types.) In addition, the property
sheet interface allows devel opers to build and associate a separate widget-based user
interface that allows iTool usersto specify data values of any IDL datatype. User-
defined property values are discussed in “User Defined Property Types’ on page 53.

iTool Developer’s Guide About the Properties Interface

50 Chapter 4: Property Management

Property Registration

In order for an object property to be displayed by the graphical property sheet
interface, it must be registered with the iTool system. Properties are generally
registered when an object is created; see “ Registering Properties’ on page 54 for
additional details.

Property Identifiers

Properties are referenced within the iTools system using property identifiers, which
are simple scalar strings defined when the property is registered. See “Property
Identifiers’ on page 57 for details.

Property Attributes

In addition to the property value, properties have attributes that affect the way the
property is displayed in the property sheet user interface. See “ Property Attributes’
on page 58 for details.

Property Aggregation
Visualization objects can be built from any number of atomic IDL graphic objects
and iTool visualization objects. The property aggregation mechanism allows the

properties of al of the objectsin avisualization to be displayed in a single property
sheet. See “Property Aggregation” on page 61 for details.

About the Properties Interface iTool Developer’s Guide

Chapter 4: Property Management

51

Property Data Types

Registered properties must be of one of the datatypeslisted in Table 4-1.

Note

Properties of objectsthat are not registered (that is, properties that cannot appear in
aproperty sheet) can be of any IDL datatype.

Type
Code

Type

Description

0

USERDEF

User Defined properties can contain values of any IDL
type, but must also include a string value that will be
displayed in the property sheet. See “User Defined
Property Types’ on page 53 for additional discussion of
User Defined property types.

BOOLEAN

Boolean properties contain either the integer O or the
integer 1.

INTEGER

Integer properties contain an integer value. If aproperty of
integer datatype hasa VALID_RANGE attribute that
includes an increment value, the property isdisplayedina
property sheet using a dlider. If no increment valueis
supplied, the property sheet allows the user to edit values
manually.

FLOAT

Float properties contain a double-precision floating-point
value. If a property of float datatype hasa
VALID_RANGE attribute that includes an increment
value, the property is displayed in a property sheet using a
dider. If noincrement value is supplied, the property sheet
allows the user to edit values manually.

STRING

String properties contain a scalar string value

COLOR

Color properties contain an RGB color triplet

iTool Developer’s Guide

Table 4-1: iTools property data types.

Property Data Types

52 Chapter 4: Property Management
;%ZZ Type Description
6 LINESTYLE | Linestyle properties contain an integer value between 0
and 6, corresponding to the following IDL line styles:
* 0=S0lid
» 1=Dotted
o 2= Dashed
» 3=Dash Dot
* 4 =Dash Dot Dot
* 5=Long Dashes
* 6=NoLine
See Appendix B, “Property Controls” in theiTool User’s
Guide manual for avisual example of the available line
styles.
7 SYMBOL Symbol properties contain an integer value between 0 and

8, corresponding to the following IDL symbol types:
* 0= No symbol
e 1=Pussign
o 2=Adterisk
e 3= Period (Dot)
* 4 =Diamond
* 5=Triangle
* 6=Square
e 7=X
e 8="Creater-than” Arrow Head (>)
e 9="Lessthan” Arrow Head (<)

See Appendix B, “Property Controls” in the iTool User’s
Guide manual for avisual example of the available
symbols.

Property Data Types

Table 4-1: iTools property data types.

iTool Developer’s Guide

Chapter 4: Property Management 53

Type -

Code Type Description

8 THICKNESS | Thickness properties contain an integer value between 1
and 10, corresponding to the thickness (in points) of the
line.

9 ENUMLIST | Enumerated List properties contain an array of string
val ues defined when the property isregistered. The
GetProperty method returns the zero-based index of the
selected item.

Table 4-1: iTools property data types.
User Defined Property Types

The User Defined property type lets you to create a custom interface that allow users
of your iTool to select data of types other than the predefined i Tool property types.
Creating a user defined property type entails the following:

¢ Creating a EditUserDefProperty method for the iTool component (usually a
visualization or operation) that uses the user defined property. See
“IDLitComponent::EditUserDefProperty” in the IDL Reference Guide manual
for details.

e Creating user interface code to allow usersto select avalue. Intheinitia
release of the iTool system, this means writing an IDL widget interface, but in
future releases other usersinterfaces may be available.

¢ Creating auser interface service to display the interface. See Chapter 12,
“Creating a User Interface Service” for details.

iTool Developer’s Guide Property Data Types

54 Chapter 4: Property Management
Registering Properties

In order for a property associated with an iTool component to be included in the
property sheet for that component, the property must be registered with theiTool. The
property registration mechanism accomplishes several things:

« It alowsyou to expose as many or as few of the properties of an underlying
object as you choose.

e It alowsyou to add user-defined properties to existing objects, and expose
those new properties to users of your application.

Note
You can write code to access and change property values programmatically, even if
the property being changed is not registered.

Registering a Property

Register a property by calling the RegisterProperty method of the IDLitComponent
class:

self -> RegisterProperty, Propertyldentifier [, TypeCode] $
[, ATTRI BUTE = val ue]

where Propertyldentifier isastring that uniquely identifies the property, TypeCodeis
an integer between 0 and 9 specifying the property datatype, and ATTRIBUTE isa
property attribute. You can specify multiple property attributes in the call to
RegisterProperty; see“Property Attributes’ on page 58 for details.

Note
The property identifier string must obey certain rules; see “Property Identifiers” on
page 57 for details.

You can omit the TypeCode parameter and specify atype keyword; the following two
method calls are identical:

self -> RegisterProperty, ' MYPROPERTY', 1
self -> RegisterProperty, ' MYPROPERTY', /BOOLEAN

See “Property Data Types’ on page 51 for alist of property data types, their type
codes, and the associated keywords to the RegisterProperty method.

A typical property registration call looks like the following:

Registering Properties iTool Developer’s Guide

Chapter 4: Property Management 55

self -> RegisterProperty, 'FONT_STYLE , $
ENUMLIST = ['Normal', 'Bold'], $
NAME = ' Font style'

Here, the string argument FONT_STYLE isthe property identifier of the property
being registered; this string must be the same as the name of the keyword used with
the GetProperty or SetProperty method when changing the value of the property.

The ENUMLIST keyword specifies that the property datatype is an enumerated list
of strings containing two possible property values (" Normal *, ' Bol d'); thiswill
appear as a pulldown list of values in the property sheet. The NAME keyword
specifiesthe string that will be used asthe [abel for the property in the property sheet;
if NAME is omitted, the property identifier string will be used in the property sheet.

Note
Values set via keywords to the RegisterProperty method are known as property
attributes. Property attributes can be modified after registration using the
SetPropertyAttribute method, described in “Property Attributes’ on page 58.

Additional keywords can be set in the call to RegisterProperty. See the documentation
for “IDLitComponent::RegisterProperty” in the IDL Reference Guide manual for
additional details.

In addition to registering the property using RegisterProperty, you must make sure
that the GetProperty and SetProperty methods of your object handle the value of the
property being registered.

Pre-Registered Properties

Not all properties need to be explicitly registered in your iTool code in order to be
displayed in a property sheet. Most of the IDL graphics objects (IDLgrAxis,
IDLgrPlot, etc.) have a set of propertiesthat are automatically registered if you set the
REGISITER_PROPERTIES property of the object to 1 when it isinstantiated. See
the list of abject properties contained in the documentation for the IDL graphics
objectsin the IDL Reference Guide to determine which properties are registered
when the REGISTER_PROPERTIES property is set.

There may be times when you want some, but not all, of the registrable properties of
agraphics object to appear in the property sheet interface. You have two optionsin
this case:

1. Register the properties of the graphics object individually, with calls to the
RegisterProperty method.

iTool Developer’s Guide Registering Properties

56 Chapter 4: Property Management

2. Usethe REGISTER_PROPERTIES keyword when instantiating the graphics
object, then set the HIDE property attribute on the properties you want to
remove from the property sheet. See“ Property Attributes’ on page 58 for more
on this option.

Registering Properties iTool Developer’s Guide

Chapter 4: Property Management 57

Property ldentifiers

Property identifiers are scalar string values that identify a registered property. The
property identifier string must be accepted as a keyword by the GetProperty and
SetProperty methods for the object. Like all IDL keywords, property identifier strings
must be valid IDL variable names, and cannot contain spaces or non-alphanumeric
characters other than“_”,“! ", and “$". See“IDL_VALIDNAME" inthe IDL
Reference Guide manual for details on valid IDL variable names.

Note
You can specify the property identifier string using any case; IDL will match the
property identifier with the GetProperty or SetProperty keyword in a case-
insensitive manner. As a matter of style, using upper case letters when specifying
property identifiers helps someone reading your code visually match the property
identifier with the keyword values.

The property identifier is not displayed in the property sheet interface; the value of
the NAME property attribute is displayed instead. However, if you do not supply the
NAME attribute, the iTool system will assign it the same value as the property
identifier.

iTool Developer’s Guide Property Identifiers

58 Chapter 4: Property Management

Property Attributes

Property attributes are val ues associated with a property that affect the way the
property is displayed in the iTool property sheet interface. Attributes could be
considered properties-of-properties; as with actual properties, specia methods are
used to get and set attribute val ues.

Note
A property must be registered in order to set or retrieve attribute values.

Property attributes can be set in the call to the IDLitComponent::RegisterProperty
method; simply include the attribute name and its value as a keyword-value pair.

If aproperty has already been registered, you can change the registered attribute
values using the SetPropertyAttribute method of the IDLitComponent class:

self -> SetPropertyAttribute, Propertyldentifier, ATTRI BUTE = val ue

where Propertyldentifier isastring that uniquely identifies the property, ATTRIBUTE
is one of the property attributes described in “Avail able Property Attributes’ on

page 58, and value is the attribute value. See “ Property Identifiers’ on page 57 for a
discussion of property identifier strings.

A typical property attribute modification call looks like the following:
self -> SetPropertyAttribute, 'COLOR, NAME = 'Surface color’

Here, we change the Name attribute of the COLOR property; when this property is
displayed in a property sheet, the label will be Sur f ace col or.

See “IDLitComponent:: SetPropertyAttribute” in the IDL Reference Guide manual for
additional details.

Available Property Attributes

Every registered iTool property has the following attributes. Property attributes can
be specified as keywords to the RegisterProperty method of the IDLitComponent
class. Attributes whose names are followed by the word “ Get” can be retrieved using
the GetPropertyAttribute method of the IDLitComponent class; attributes whose
names are followed by the word “ Set” can be set using the SetPropertyAttribute
method.

Property Attributes iTool Developer’s Guide

Chapter 4: Property Management 59

DESCRIPTION (Get, Set)

A string value containing a text description of the property. Thisstringisdisplayed in
the property sheet interface.

ENUMLIST (Get, Set)

An array of string values to be displayed in the property sheet interface as an
enumerated list. This property type allows the user to select a string value from a
dropdown list in the user interface, but returns the integer index of the selected item
as the value of the property. This attribute is only used by propertiesof TYPE =9
(enumerated list).

HIDE (Get, Set)

A Boolean flag that specifies whether the property should be displayed in the
property sheet interface.

NAME (Get, Set)

A string value that is displayed as the property name in the property sheet interface. If
the NAME attribute is not specified in the call to the RegisterProperty method, this
attribute will be set to the property identifier string.

PROPERTY_IDENTIFIER (Get)

A string value containing the property identifier. See “ Property Identifiers’ on
page 57 for details.

SENSITIVE (Get, Set)

A Boolean flag that specifies whether the property should be editable by the user
when displayed in the property sheet interface. Properties with the SENSITIVE
attribute set to 0 are displayed, but are dimmed and are not editable.

TYPE (Get)

The property data type code for the property. See “Property Data Types’ on page 51
for details.

UNDEFINED (Get, Set)

A Boolean flag that indicates that the property should appear as a blank cell when
displayed in the property sheet interface. Thisisuseful in situations where properties

iTool Developer’s Guide Property Attributes

60 Chapter 4: Property Management

of multiple objects are displayed in the property sheet (either because multiple
objects are selected, or because the objects have been grouped).

Note
TheiTool developer isresponsible for setting this property attribute back to zero.
Usethe SET_DEFINED field of the WIDGET_PROPERTY SHEET event structure
to determine when to set the UNDEFINED attribute back to zero.

USERDEF (Get, Set)

A string that represents the value of a user-defined property. See “User Defined
Property Types’ on page 53 for details.

VALID_RANGE (Get, Set)

A two- or three-element array of integers or floating-point values. If the
VALID_RANGE attribute contains avalue, the property sheet interface will allow the
user to edit the numerical value by dragging a slider control. The first element of the
array represents the minimum allowed val ue, the second element represents the
maximum allowed value, and the third element (if present) represents an increment
value. If anincrement is specified, only values that are integer multiples of the
increment, plusthe initial value, are allowed. This attributeis only used by properties
of TYPE =2 or TYPE = 3 (integer or float).

Property Attributes iTool Developer’s Guide

Chapter 4: Property Management 61
Property Aggregation

TheiTools property aggregation mechanism allows the properties of several different
objects held by the same container object to be displayed in the same property sheet
automatically. Without property aggregation, you would have to manually register all
of the properties of the objects contained in your visualization type object.

Aggregate the properties of contained objects using the Aggregate method of the
IDLitVisualization class:

self -> Aggregate, bject_Reference

where Object_Reference is areference to the object whose properties you want
aggregated into the visualization object. A typical property aggregation call lookslike
the following:

sel f._oSymbol = OBJ_NEW' I DLitSynmbol ', PARENT = self)

sel f -> Aggregate, self._oSynbol
Here, thefirst line creates an IDLitSymbol object and storesitinthe _oSynbol field
of the visualization object’s class structure. The second line calls the Aggregate
method with the object reference to the IDLitSymbol object as the argument. After
the call to the Aggregate method, all registered properties of the IDLitSymbol object
will be exposed in the property sheet for the visualization itself.

Note
The IDLitVisualization::Add method includes an AGGREGATE keyword. This
keyword is ssmply a shorthand method of aggregating the properties of an object
during the call to the Add method, eliminating the need to call the Aggregate
method separately. The call

self -> Add, bject_ Reference, /AGGREGATE
isthe same as the following two calls:

self -> Add, bject_Reference
self -> Aggregate, Object_ Reference

Working with Aggregated Properties
When the properties of multiple objects are aggregated in avisualization object, there

are two possible ways to display the combined property set: aunion or an
intersection. The way aggregated properties are displayed by agiven visualization

iTool Developer’s Guide Property Aggregation

62 Chapter 4: Property Management

depends on the value of the visualization’s PROPERTY _INTERSECTION property:
by default, this property is not set (it contains avalue of 0), and the union of the
aggregated propertiesis displayed. If PROPERTY _INTERSECTION isset to 1 when
the visualization object is created, the intersection of the aggregated propertiesis
displayed. The following sections explain the behavior of the property sheet interface
in both situations.

Union

By default, a visualization object displays the union of the properties of any
aggregated objects. Properties are displayed in the property sheet interface asfollows:

« All of the unique properties of al of the aggregated objects are displayed.

* Only oneinstance of agiven property is displayed. This meansthat if multiple
objects have the same property, this property will be displayed only once, and
all objects will have the same property value.

e Thevisuaization will appear in iTool browsers as a single object — the
aggregated objects will not be visible in the browser hierarchy.

Intersection

If the PROPERTY _INTERSECTION property is set when the visuaization is
created, the visualization object displays the intersection of any aggregated objects.
Properties are displayed in the property sheet interface as follows:

¢ Only propertiesthat are common to al of the aggregated objects are displayed
as properties of the visualization object. Changing the value of a common
property in the visualization's property sheet changes the value for all
aggregated objects.

e Thevisualization will appear iniTool browsers as a container object — the
aggregated objects will be visible beneath the visualization object in the
browser hierarchy (unless the property’s HIDE attribute is set, in which case
the property will not be displayed). Selecting an individual aggregated object
in the browser hierarchy will display that object’s own properties.

« If thevalue of aproperty that is common to all of the aggregated objectsis
different for different objects, the value will show in the parent container’s
property sheet as undefined.

Property Aggregation iTool Developer’s Guide

Chapter 4: Property Management 63

Property Update Mechanism

When a user changes the value of a property viathe property sheet interface, the
object that implements the property is automatically updated. If the object has a
visual representation, the display of the iTool window is also updated automatically.

The update mechanism is handled by the SetProperty method; as long as any
SetProperty methods you create call the SetProperty methods of their superclasses,
there is nothing more you need to do.

Property changes are automatically recorded by the i Tool undo/redo system. You do
not need to supply any extra code to support undo/redo.

iTool Developer’s Guide Property Update Mechanism

64 Chapter 4: Property Management

Properties of the iTools System

iTools system preferences are default settings for the values of properties of
visualization types, file readers, file writers, and the iTool system itself. System
preferences are revealed to the user via the system preferences browser, which is
displayed when a user selects File — Preferencesin an iTool

Properties of the iTools System iTool Developer’s Guide

Part II: Using the
ITools Component
Framework

Chapter 5:
Creating an iTool

This chapter describes the process of creating an new iTool definition and command-line launch
routine.

OVEIVIEW ...t 68 Creating aniTool Launch Routine 80
CreatingaNew iToolClass 69 Example: SmpleiTool 85
RegisteringaNew Tool Class 78

iTool Developer’s Guide 67

68

Chapter 5: Creating an iTool

Overview

Creating anew iTool using the iTools component framework is vastly simpler than
creating asimilar tool from scratch in IDL. The standard i Tool user interface and
functionality can be included in any new i Tool with afew simple lines of code. Using
the iTools framework leaves you free to concentrate on devel oping functionality
unigue to your application.

That said, creating even the simplest iTool does require that you have abasic
familiarity with the concepts of object-oriented programming in general, and with the
process of creating object-oriented programsin IDL in particular. If you have written
even very simple object-oriented applicationsin IDL, or in another language such as
Java or C++, you probably already have the necessary skills. For background
information on writing object-oriented applicationsin IDL, see Chapter 22, “ Object
Basics’ in the Building IDL Applications manual.

The iTool Creation Process

Overview

To create anew iTool, you will do the following:

e Choose aniTool object class on which your new tool will be based. In almost
all cases, you will base new iTools either on the IDLitToolbase class or on an
iTool classthat isitself based on IDLitToolbase. The IDLitToolbase class
defines all of the standard i Tool functionality exposed by the individual i Tools
included with IDL.

* Define the visualization types, data operations, user interface tools
(manipulators), and data import/export features that will be availablein your
iTool. You can choose from a variety of predefined features included with the
iTool system asincluded with IDL, or you can create your own. The process of
defining the features available in your new iTool is discussed in “ Creating a
New iTool Class’ on page 69.

* Register your new iTool class with the system as described in “Registering a
New Tool Class’ on page 78.

e Providean IDL procedure that creates an instance of your new iTool class, as
described in “Creating an iTool Launch Routing” on page 80.

This chapter describes the process of creating anew iTool from existing visualization
types, operations, and file readers and writers. The chapters that follow describe how
to create your own visualization types, operations, and file readers and writers to be
incorporated into new iTools.

iTool Developer’s Guide

Chapter 5: Creating an iTool 69

Creating a New iTool Class

AniTool object class definition file must contain, at the least, the class Init method
and the class structure definition routine. The Init method contains the statements that
register any operations, visualizations, and file readers or writers available in the
iTool. The class structure definition routine defines an IDL structure that will be used
when creating new instances of the iTool object.

The process of creating aniTool definition is outlined in the following sections:
e “Creating an Init Method” on page 69
e “Creating the Class Structure Definition” on page 75

Creating an Init Method
TheiTool class Init method handles any initialization required by the iTool object,
and should do the following:

e cdl the Init methods of any superclasses

e register visualizations, operations, and file readers/writers available in the new
iTool but not registered by any superclasses

e perform other initialization steps as necessary

e returnthevalue 1if the initialization steps are successful, or 0 otherwise
Superclass Initialization

TheiTool class Init method should call the Init method of any required superclass.
For example, if your iTool isbased on an existing i Tool, you would call that tool’s Init
method:

success = self -> SoneTool A ass::Init()
where SomeTool Class is the class definition file for the iTool on which your new
iTool isbased. Thevariable success containsa 1 if theinitialization was successful.

Note
Your iTool class may have multiple superclasses. In general, each superclass’ Init
method should be invoked by your class' Init method.

iTool Developer’s Guide Creating a New iTool Class

70

Chapter 5: Creating an iTool

Error Checking

Rather than ssimply calling the superclass Init method, it is a good ideato check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method; if the returned valueis 0
(indicating failure), the current Init method also immediately returns with a value of
(0

IF (self -> SomeTooldass::Init() EQO0) THEN RETURN, O

This convention isused in all iTool classesincluded with IDL. RSI strongly suggests
that you include similar checksin your own class definition files.

Keywords to the Init Method

Properties of theiTool class can be set in the Init method by specifying the property
names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitTool class are available to any iTool class. See
“IDLitTool Properties’ in the IDL Reference Guide manual.

Use keyword inheritance (the _EXTRA keyword) to pass keyword parameters
through to the superclass as necessary. See “Keyword Inheritance” in Chapter 4 of the
Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.

Standard Base Class

While you can create your new iTool from any existing iTool class, in many cases,
iTool classes you create will be subclassed directly from the base class
IDLitToolbase:

IF (self -> IDLitTool base::Init(_EXTRA = _extra) EQ 0) THEN $
RETURN, O

The IDLitToolbase class provides the base iTool functionality used in the tools
created by RSI. See “ Subclassing from the IDLitToolbase Class’ on page 75 for
details.

Note
To create an iTool that does not include the standard i Tool functionality, subclass
from the IDLitTool class.

Creating a New iTool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 71

Return Value

If al of the routines and methods used in the Init method execute successfully, the
method should indicate successful initialization by returning 1. Other iTools that
subclass from your iTool class may check this return value, as your routine should
check the value returned by any superclass Init methods called.

Registering Visualizations

Registering a visualization type with an iTool class allows instances of the iTool to
create and display visualizations of that type. Any number of visualization types can
be registered for use by agiveniTool.

Note
You must register at least one visualization type with your iTool class. Unlike
operations, and file readers and writers, no visualization types are registered by the
IDLitToolbase class.

Visualization types are registered by calling the IDLitTool::RegisterVisualization
method:

self -> RegisterVisualization, Visualization_Type, $
Vi sType_d ass_Nanme

where Visualization_Type isthe string you will use when referring to the visualization
type, and VisType Class Nameisastring that specifies the name of the classfile that
contains the visualization type’s definition.

Note
ThefileVi sType_Cl ass_Nane__defi ne. pr o must exist somewherein IDL’s
path for the visualization type to be successfully registered.

For example, the following method call registers a visualization type named ny Vi s
for which the class definition is stored in thefile
myVi sual i zati on__defi ne. pro:

self -> RegisterVisualization, 'nyVis', 'nyVisualization'

See " Registering a Visualization Type” on page 110 for additional details. See
“Predefined iTool Visualization Classes’ on page 91 for alist of visualization types
included intheiTool system asinstalled with IDL.

iTool Developer’s Guide Creating a New iTool Class

72 Chapter 5: Creating an iTool

Registering Operations

Registering an operation with aniTool class allows instances of the iTool to apply the
registered operation to data selected in the iTool. Any number of operations can be
registered with agiven iTool.

Operations are registered by calling the IDLitTool::RegisterOperation method:

self -> RegisterQperation, Operation_Type, OpType_d ass_Nane, $
| DENTIFIER = identifier

where Operation_Type is the string you will use when referring to the operation,
OpType_Class Name is astring that specifies the name of the classfile that contains
the operation’s definition, and identifier is a string containing the operation’s i Tool
identifier. (The identifier is used to specify where on the iTool’s menu bar the
operation will appear. See “iTool Object Identifiers’ on page 19 for a discussion of
iTool system identifiers.)

Note
Thefile OpType_d ass_Name__defi ne. pr o must exist somewherein IDL's
path for the visualization type to be successfully registered.

For example, the following method call registers an operation named nmy Op for which
the class definitionis stored in thefilemyOper at i on__def i ne. pr o, and placesthe
menu selection Change My Dat aintheFi | t er s folder of theiTool Oper ati ons
menu.

self -> RegisterVisualization, 'nyOp', 'nyOperation', $

| DENTI FI ER = ' Operations/Filters/Change My Data'

See “Registering an Operation” on page 153 for additional details. See “ Predefined
iTool Operations’ on page 122 for alist of operationsincluded in the iTool system as
installed with IDL.

Registering File Readers and Writers

Registering afile reader or filewriter with aniTool class alows instances of the i Tool
to read or write files of the type handled by the reader or writer. Any number of file
readers and writers can be registered with a given iTool.

File readers are registered by calling the IDLitTool::RegisterFileReader method:

self -> RegisterFil eReader, Reader_Type, Reader Type_O ass_Nane, $
ICON = icon

where Reader_Type isthe string you will use when referring to the file reader,
ReaderType Class Nameis a string that specifies the name of the classfile that

Creating a New iTool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 73

contains the file writer's definition, and icon is a string containing the name of a
bitmap file used to represent the file reader.

Similarly, file writers are registered by calling the IDLitTool::RegisterFileWriter
method:

self -> RegisterFileWiter, Witer_Type, WiterType O ass_Nane, $
I CON = icon
where Reader_Typeisthe string you will use when referring to the file reader,
Reader Type _Class Nameis a string that specifies the name of the classfile that
contains the file writer's definition, and icon is a string containing the name of a
bitmap file used to represent the file writer. See“lcon Bitmaps’ on page 28 for details
on where bitmap icon files are located.

Note
The class definition files Reader Type_C ass_Nanme__defi ne. pro or
WiterType_C ass_Nane__define. pro must exist somewherein IDL’s path
for the file reader or writer to be successfully registered.

For example, the following method call registers afile reader named myReader for
which the class definition is stored in the file nyFi | eReader __def i ne. pr o, and
specifiesthefiler eader . bnp located in the hone/ mydi r directory astheicon to
use on the toolbar.

self -> RegisterFil eReader, 'nyReader', 'nyFileReader', $
| CON = '/ hone/ nydi r/ reader. bnp’

See “Registering a File Reader” on page 177 for additional details. See “Predefined
iTool File Readers’ on page 163 for alist of file readersincluded in the iTool system
asinstalled with IDL.

Similarly, the following method call registers afile writer named nyW i t er for
which the class definition is stored in thefilenyFi | ewiter__define. pro, and
specifiesthefilewr i t er. bnp located in the hone/ mydi r directory astheicon to
use on the toolbar.

self -> RegisterFileReader, 'nyWiter', "nyFileWiter', $
ICON = '/ hone/ nydir/witer. bnp'

See “Registering a File Writer” on page 201 for additional details. See “ Predefined
iTool File Writers’ on page 187 for alist of file writersincluded in the iTool system
asinstaled with IDL.

iTool Developer’s Guide Creating a New iTool Class

74 Chapter 5: Creating an iTool

Example Init Method

The following example code shows a very simple Init method for an iTool hamed
Exanpl eTool . Thisfunction should be included in afile named
Exanpl eTool __defi ne. pro.

FUNCTI ON Exanpl eTool ::Init, _REF_EXTRA = _EXTRA
Call the Init nethod of the super class.

IF (self -> |DLitTool base: : | nit(NAVE=' Exanpl eTool ', $
DESCRI PTI ON = ' Exanpl e Tool O ass', _EXTRA = _extra) EQO) THEN $

RETURN, O
Regi ster a visualization
self -> RegisterVisualization, 'Ilmage', 'IDLitVislmage', $
| CON = 'image'

Regi ster an operation
self -> RegisterQperation, 'Byte Scale', 'IDLitQpBytScl', $
| DENTI FI ER = ' Operations/Byte Scal e'

RETURN, 1

END
Discussion

The Exanpl eTool isbased on the IDLitToolbase class (discussed in “ Subclassing
from the IDLitToolbase Class’ on page 75). As aresult, al of the standard i Tool
operations, manipulators, file readers and writers are already present. The

Exanpl eTool Init method needs to do only three things:

1. Cadl theInit method of the superclass, IDLitToolbase, using the EXTRA
keyword inheritance mechanism to pass through any keywords provided when
the Exanpl eTool Init method is called.

2. Register avisualization type for the tool. We choose the standard image
visualization defined by thei dl i t vi si mage__def i ne. pr o class definition
file,

3. Register an operation. We choose an operation that implements the IDL
BYTSCL function, defined by thei dl i t opbyt scl __defi ne. pro class
definition file and place a menu item in the iTool Operations menu.

Creating a New iTool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 75

Note
This example is intended to demonstrate how simple it can be to create anew iTool
class definition. While the class definition for an iTool with significant extra
functionality will register more features, the processis the same.

Unregistering Components

In some cases, you may want to subclass from an iTool class that contains features
you do not want to include in your class. Rather than building a class that duplicates
most, but not al, of the functionality of the existing class, you can create a subclass
that explicitly unregisters the components that you don’t want included.

For each Register method of the IDLitTool classthereis acorresponding UnRegister
method. Call the UnRegister method with the Name you used when registering the
component. For example, if your superclass registers an operation with the identifier
"Ml tiplyBy100' andyou do not want this operation included in your class, you
would include the following method call in your iTool class Init method:

self -> UnRegi sterQperation, 'MiltiplyByl00'
Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
data types of those fields. The object class structure must have been defined before
any objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure
named Obj ect C ass__def i ne (where ObjectClassis the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle” in Chapter 22 of the Building IDL Applications manual.

Subclassing from the IDLitToolbase Class

The IDLitToolbase class defines the base operations and user interface functionality
used iniTools created by RSI. If your aimisto create an iTool that has base
functionality similar to that included in the standard i Tools, you will want to subclass
from the IDLitToolbase class, or from another tool that subclasses from the
IDLitToolbase class.

The IDLitToolbase class registers alarge number of operations, manipulators, file
readers, and file writers. This base feature set may change from release to release;

iTool Developer’s Guide Creating a New iTool Class

76

Chapter 5: Creating an iTool

inspect thefilei dl i tt ool base__define. prointhelib/it ool s subdirectory
of your IDL distribution for the exact set of features included in your distribution.

Note
To create an iTool that does not include the standard i Tool functionality, subclass
from the IDLitTool class.

In general, the IDLitTool base class registers the following types of features:

Standard menu items — Operations that appear in the File, Edit, Insert, Window,
and Help menus are defined in the IDLitToolbase class. If you are building a subclass
of the IDLitToolbase class, you have the option of adding items to or removing items
from these menus in your own class definition file.

Operations menu items — Standard data-centric operations provided as part of the
iTools distribution and which appear in all of the standard i Tools are placed on the
Operations menu by the IDLitToolbase class.

Context menu items — Standard operations such as Cut, Copy, Paste, Group,
Ungroup, etc. are included on the context menu by the IDLitToolbase class.

Toolbar items — Operations that enable standard File and Edit menu functionality
are placed on the toolbar by the IDLitToolbase class. In addition, standard

mani pul ators (zoom, arrow, and rotate), and annotations (text, line, rectangle, oval,
polygon, and freeform) are placed on the toolbar.

File readers — All file readersincluded in the iTools distribution are registered by
the IDLitToolbase class. File readers do not appear in theiTool interface, but are used
automatically when importing a datafile.

File writers — All filewritersincluded in the iTools distribution are registered by the
IDLitToolbase class. File writers do not appear in the iTool interface, but are used
automatically when exporting datato afile.

Example Class Structure Definition

Thefollowing isavery simple iTool class structure definition for an iTool named
Exanpl eTool . This procedure should be the last procedure in afile named
exanpl et ool __defi ne. pro.

PRO Exanpl eTool __Defi ne
struct = { Exanpl eTool, $
| NHERI TS | DLi t Tool base $; Provides i Tool interface

}
END

Creating a New iTool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 77

Discussion

The purpose of the structure definition routine is to define anamed IDL structure
with structure fields that will contain the iTool object instance data. The structure
name should be the same as the iTool’s class name — in this case, Exanpl eTool .

Like many iTools, Exanpl eTool iscreated as asubclass of the IDLitToolbase class.
iToolsthat subclassfrom IDLitToolbase inherit all of the standard i Tool functionality,
as described in “ Subclassing from the IDLitToolbase Class’ on page 75.

Note
This example isintended to demonstrate how simpleit can be to create a new i Tool
class definition. While the class definition for an iTool with significant extra
functionality will likely define additional structure fields, and may inherit from
other iTool classes, the basic principles are the same.

iTool Developer’s Guide Creating a New iTool Class

78 Chapter 5: Creating an iTool

Registering a New Tool Class

Before an instance of anew iTool can be created, the tool’s class definition must be
registered with the iTool system. Registering an iTool class with the system links the
class definition file containing the actual IDL code that initializes an iTool object
with asimple string that names the iTool. Since you use the name string in code that
creates instances of individual tools, a change to the name of the class definition file
requires only a change to the code that registers the iTool class.

iTool classes are registered using the ITREGISTER procedure. In most cases, the call
to the ITREGISTER procedure will be included in an iTool’s launch routine, but the
call can take placein any code at any time. If multiple iTool launch routines create
instances of the same iTool class, however, you may find it more convenient to
register theiTool in asingle routine, called only once. This removes the need to call
the registration routine in each launch routine individually.

Note
If only asmall number of routines will create instances of a given iTool, you may
find it more convenient to register the iTool class within the tool launch routine.

Using ITREGISTER

Use the ITREGISTER routine to register the class definition:
| TREG STER, ' Tool Name', 'Tool _Cl ass_Nane'

where Tool Name is a string you will use to create instances of the tool, and
Tool_Class Nameis astring that specifies the name of the classfile that contains the
tool’s definition.

Note
Thefile Tool _Cl ass_Nanme__defi ne. pr o must exist somewherein IDL’s path

for the tool definition to be successfully registered.

If agiven iTool class has aready been registered when the ITREGISTER routineis
called, the class will not be registered a second time. The registration can be
performed at any timein an IDL session before you attempt to create an instance of
theiTool.

See“ITREGISTER” in the IDL Reference Guide manual for details.

Registering a New Tool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 79

Example

Suppose you have aniTool class definition file named ny Tool __def i ne. pro,
located in adirectory included in IDL's 'PATH system variable. Register this class
with the iTool system with the following command:

| TREG STER, 'MWy First Tool', 'nyTool'

Tools defined by the my Tool class definition file can now be created by the iTool
system by specifying thetool name My Fi rst Tool . In most cases, this command
would be included in the launch routine for the my Tool iTool, but the call can be
placed in any code that is executed before the first instance of theiTool is created.

iTool Developer’s Guide Registering a New Tool Class

80 Chapter 5: Creating an iTool

Creating an iTool Launch Routine

AniTool launch routineis an IDL procedure that creates an instance of an iTool by
calling the IDLITSYS CREATETOOL function. The launch routine may do other
things as well, including creating data objects to pass to the create function from
command-line arguments.

The process of creating aniTool launch routine is outlined in the following sections:
e “Specifying Command-Line Arguments and Keywords’ on page 80
e “Creating Data Objects’ on page 81
e “Handling Errors’ on page 82
e “Creating aniTool Instance” on page 83

Specifying Command-Line Arguments and Keywords

If you want to be able to specify datato be loaded into your iTool when launching the
tool from the IDL command line, you must specify positional arguments or keywords
in the procedure definition. The procedure definition for an iTool launch routine may
look something like the following:

PRO nyTool , Al, A2, MYKEYWORD = nyKeys, IDENTIFIER = id, $

_EXTRA = _extra

Here, there are two positional parameters (or arguments) and three keyword
parameters are specified.

Arguments

Data arguments are specified in an iTool launch routine as with any IDL procedure.
See“Parameters’ in Chapter 4 of the Building IDL Applications manual for detailson
arguments.

Keywords

Keyword arguments to an iTool launch routine are handled as with any IDL
procedure. See “Parameters’ in Chapter 4 of the Building IDL Applications manual
for details on keyword arguments. In addition, you may want to include the following
keyword arguments in the definition of the launch routine:

The IDENTIFIER Keyword

The IDENTIFIER keyword is used to return the iTool system identifier string for the
newly created tool. You must set the variable specified by the IDENTIFIER keyword

Creating an iTool Launch Routine iTool Developer’s Guide

Chapter 5: Creating an iTool 81

equal to thereturn value of the IDLITSYS CREATETOOL function. This allowsthe
user to retrieve the newly-created i Tool’s identifier in an IDL variable by including
the IDENTIFIER keyword in the call to the launch routine. The iTool identifier can
then be used to specify the iTool as the target for another operation, such as
overplotting.

The EXTRA Keyword

Optionally, you can use IDL’s keyword inheritance mechanism to pass keyword
parameters that are not explicitly handled by your routine through to other routines.
See“Keyword Inheritance” in Chapter 4 of the Building IDL Applications manual for
details on IDL’s keyword inheritance mechanism.

Creating Data Objects

If your iTool launch routine allows users to specify data arguments (as opposed to
keywords that are passed through to the iTool component objects), you must process
those arguments and create an IDLitParameterSet object to be passed to the
IDLITSYS CREATETOOL function. Parameter sets, data types, and general iTool
system data handling concepts are discussed in detail in Chapter 3, “Data
Management”.

Parameter Sets

Datais passed to a newly-created i Tool instance by supplying an IDLitParameterSet
object asthe value of the INITIAL_DATA keyword tothe IDLITSYS CREATETOOL
function. To create a parameter set object, use the OBJ NEW function:

oParaneterSet = OBJ_NEW' | DLitParaneterSet', NAME = parantSet Nane)

where oParameter Set is a named variable that will hold the object reference to the
parameter set object and paramSetName is a string that will be used by the iTool user
interface to refer to the parameter set.

For example, if you are creating a data container to hold X and Y vectorsto be plotted
in two-dimensions, you might use the following code:

oPlotData = OBJ_NEW' I DLitParanmeterSet', NAVE = 'Plot data')

See Chapter 3, “Data Management”, and “|DLitParameterSet” in the IDL Reference
Guide manual for details.

Data Iltems

The parameter set object holds objects of type IDLitData, or objects of types derived
from IDLitData, such as IDLitDatalmage or IDLitDataVector. These data objects, in

iTool Developer’s Guide Creating an iTool Launch Routine

82 Chapter 5: Creating an iTool

turn, hold the actual data used by theiTool. To create a data object, use the
OBJ _NEW function:

oData = OBJ_NEW' IDLitData', vData, TYPE = dataType, $
NAME = dat aNane)

where oData is anamed variable that will hold the object reference to the data object,
vData isan IDL variable containing the actual data, dataType is a string specifying
theiTool datatype of the data held by the object, and dataNameis a string that will be
used by the iTool user interface to refer to the data object. See “iTool Data Types’ on
page 34 for additional information on iTool data types.

For example, if you are creating a data object to hold the Y vector of a two-
dimensional plot, you might use the following code:

oPlotY = OBJ_NEW'IDLitData', yData, TYPE = 'IDLVECTOR , $
NAME = 'Y data')

Here, the data that make up the Y vector are contained in the variable yDat a. After a
data item has been created, it must be added to the parameter set object. Continuing
our example, the following code adds the oPlotY data object to the oPlotData
parameter set object, assigning the parameter name' Y dat a' :

oPlotData -> Add, oPlotY, PARAMETER NAME='Y data'

See Chapter 3, “Data Management”, and “IDLitData’ in the IDL Reference Guide
manual for details.

Example

For an example i Tool launch routine that creates and popul ates a parameter set object,
see “Example: SimpleiTool” on page 85.

Handling Errors

The error-handling requirements of your iTool launch routine will depend largely on
the type of data processing you perform. In general, your goal should be to clean up
any objects or pointers your routine creates, display an error message to the user, and
return to the calling routine. It is beyond the scope of this chapter to discuss IDL’s
error handling mechanismsin detail; for more information see Chapter 18,
“Controlling Errors’ in the Building IDL Applications manual.

iTool launch routines included in the IDL distribution handle errors by placing a
block of IDL code that looks like the following at the beginning of the routine:

ON_ERROR, 2
CATCH, iErr
IF (iErr NE 0) THEN BEG N

Creating an iTool Launch Routine iTool Developer’s Guide

Chapter 5: Creating an iTool 83

CATCH, / CANCEL
| F OBJ_VALI D(oDat aCbj ect) THEN OBJ_DESTROY, oDat aQbj ect
MESSAGE, / RElI SSUE_LAST
RETURN
ENDI F

This block of error-handling code does the following:

1. Usesthe ON_ERROR procedure to instruct IDL to return to the caler of the
program that establishes an error condition.

2. Usesthe CATCH procedure to establish an error-handler for theiTool launch
routine, returning the error code in the variablei Err.

3. Ifthevalueofi Err isnot O (that is, if an error is detected), do the following:
e Usethe CATCH procedure again to cancel the error handler.

« Destroy any data objects created by the launch routine. In most cases,
destroying the data container object (represented here by oDataObject)
will be sufficient to destroy all objects added to the data container.

¢ Usethe MESSAGE routine to display the error messagein the IDL output
log.
Once these tasks have been accomplished, use the RETURN procedure to

return to the routine that called the iTool launch routine, or to the IDL Main
level, if the launch routine was invoked at the IDL command prompt.

Depending on the complexity of your iTool launch routine, additional cleanup may be
required. For example, you may need to free IDL pointers created by the launch
routine. In many cases, however, error-handling code similar to that used in the
standard iTool launch routines will be sufficiently robust.

Creating an iTool Instance

Create an instance of your iTool class by caling the IDLITSYS CREATETOOL
function:

id = I DLI TSYS_CREATETOOL(' Tool Nanme', NAME = 'Tool Label', $
VI SUALI ZATI ON_TYPE = 'VisType', $
I NI TI AL_DATA = 'oDataContainer', _EXTRA = _extra)

where Tool Name is the name of a previously-registered iTool class, Tool Label isa
text label that will be used in the iTool user interface to identify this instance of the
iTool, VisTypeisthe name of apreviously-registered i Tool visualization type (or array
of visualization types), and oDataContainer is an IDLitDataContainer object created
from the values specified as arguments or keywords.

iTool Developer’s Guide Creating an iTool Launch Routine

84 Chapter 5: Creating an iTool

We aso use I DL’s keyword inheritance mechanism (the EXTRA keyword) to pass
any additional keyword parameters specified when the launch routineis called
through to the lower-level iTool routines.

See“IDLITSYS CREATETOOL” inthe IDL Reference Guide manual for details.
iTool Class Registration

Before an instance of an iTool can be created, the iTool class must be registered with
theiTool system. AniTool class can be registered with the system within the launch
routine by calling the ITREGISTER routine, but you may benefit from registering
iTool classes separately. See “Registering a New Tool Class’ on page 78 for details.

iTool Visualization Type Registration

Similarly, the visualization type or types specified by the VISUALIZATION_TYPE
keyword must have been registered with the system. In most cases, visualizationswill
either be predefined i Tool visualizations (see “Predefined i Tool Visualization
Classes’ on page 91) or will beregistered intheiTool class Init method, as described
in“Creating aNew iTool Class’ on page 69. All iTools must have at least one
visualization type. Multiple visualization types are specified by supplying a string
array asthe value of the VISUALIZATION_TY PE property.

Note
Once avisualization type has been registered with theiTool system, it isavailableto
all iTools launched during an IDL session. This means that the list of visualization
types available to agiven iTool can change if other iTools are launched.

Creating an iTool Launch Routine iTool Developer’s Guide

Chapter 5: Creating an iTool 85

Example: Simple iTool

This example creates avery simple iTool named exanpl elt ool that incorporates
standard functionality from the i Tools distribution.

Class Definition File

The class definition for the exanpl elt ool consists of an Init method and a class
structure definition routine. Aswith all object class definition files, the class structure
definition routine is the last routine in the file, and the file is given the same name as
the class definition routine (with the suffix . pr o appended).

Init Method
FUNCTI ON exanpl eltool ::1nit, _REF_EXTRA = _EXTRA

Call our super class
IF (self -> IDLitTool base::Init(_EXTRA = _extra) EQ 0) THEN $

RETURN, O

;*** Visualizations

self -> RegisterVisualization, 'Image', 'IDLitVislmage', $
ICON = "inmmge', /DEFAULT

self -> RegisterVisualization, 'Colorbar', 'IDLitVisColorbar', $

| CON = 'col orbar'

(*¥** | nsert nenu

self -> RegisterQperation, 'Colorbar', 'IDLitOplnsertColorbar', $
| DENTIFIER = '"Insert/Col orbar', 1 CON = 'col orbar'
RETURN, 1
END
Discussion

Thefirst item in our class definition fileisthe Init method. The Init method’s function
signature is defined first, using the class hame exampleltool. Note the use of the

_REF_EXTRA keyword inheritance mechanism; this allows any keywords specified
in acall to the Init method to be passed through to routines that are called within the
Init method even if we do not know the names of those keywords in advance.

Next, we call the Init method of the superclass. In this case, we are creating asubclass
of the IDLitToolbase class; this provides us with al of the standard i Tool
functionality automatically. Any “extra’ keywords specified in the call to our Init

iTool Developer’s Guide Example: Simple iTool

86 Chapter 5: Creating an iTool

method are passed to the IDLitToolbase::Init method via the keyword inheritance
mechanism.

We register two standard i Tool visualization types. Image and Colorbar. Both of these
types are part of the regular iTool distribution, so we simply register the existing
classes.

We aso register astandard i Tool operation: Insert Colorbar. Our call to the
RegisterOperation method specifies the IDENTIFIER property as

"Insert/ Col orbar', which placesaColorbar entry on the Insert menu of the
iTool.

Finally, we return the value 1 to indicate successful initialization.

Class Definition

PRO exanpl elt ool __Defi ne

struct = { exanpl eltool, $
I NHERI TS | DLi t Tool base $; Provides i Tool interface
}
END
Discussion

Our class definition routine is very simple. We create an IDL structure variable with
the name exanpl elt ool , specifying that the structure inherits from the
IDLitToolbase class.

Launch Routine

Our iTool launch routine also usesthe class name exanpl elt ool . It acceptsasingle
data argument, which we assume will contain an image array. The code is shown
below:

PRO exanpl eltool, data, |DENTIFIER = I DENTIFI ER, _EXTRA = _EXTRA
nParanms = N_PARAMS()

IF (nParanms gt 0) THEN BEG N
oParnSet = OBJ_NEW' I DLitParaneterSet', $
NAME = 'exanple 1 paraneters', $
ICON = "image', $
DESCRI PTI ON = ' Exanpl e tool paraneters')

Example: Simple iTool iTool Developer’s Guide

Chapter 5: Creating an iTool 87

I F (N_ELEMENTS(data) GI 0) THEN BEG N
oData = OBJ_NEW "I DLi t Dat al DLI magePi xel s")
result = oData -> SetData(data, _EXTRA = _EXTRA)
oParnBet -> Add, oData, PARAVETER NAME = "I nagePi xel s"

Create a default grayscale ranp.
ranp = Bl NDGEN(256)
oPalette = OBJ_NEW' I DLitDatal DLPalette', $
TRANSPCSE([[ranp], [ranp], [ranp]]), $
NAME = ' Pal ette')
oPar nSet -> Add, oPalette, PARAMETER NAME = ' PALETTE

ENDI F
ENDI F
| TREG STER, "Exanple 1 Tool", "exanpl eltool"

identifier = IDLI TSYS CREATETOOL("Exanple 1 Tool",$
VI SUALI ZATI ON_TYPE = ["Image"], $
I NI TI AL_DATA = oParnBSet, _EXTRA = _EXTRA, $
TITLE = "First Exanple iTool")
END

Discussion

Our iTool launch routine accepts a single data argument. We also specify that our
launch routine should accept the IDENTIFIER keyword; we will use the variable
specified as the value of this keyword (if any) to return the iTool identifier of the new
iTool we create.

First, we check the number of non-keyword arguments that were supplied using the
N_PARAMS function. If an argument was supplied, we create an |DLitParameter Set
object to hold the data.

Next, we check to make sure the supplied data argument is not empty using the
N_ELEMENTS function. If the supplied argument contains data, we create an
IDLitDatal mage object to contain the image data and add the object to our parameter
set object, assigning the parameter name' | mrage' .

Note
In the interest of brevity, we do very little data verification in this example. We
could, for example, verify that the data argument contains a two-dimensional array
of a specified type.

We use the ITREGISTER procedure to register our iTool class with the name
"Exanple 1 Tool ".

iTool Developer’s Guide Example: Simple iTool

88 Chapter 5: Creating an iTool

Finally, we call the IDLITSYS CREATETOOL function with the registered name of
our iTool class.

Example: Simple iTool iTool Developer’s Guide

Chapter 6:
Creating a Visualization

This chapter describes the process of creating an iTool visualization type.

OVEIVIEW ...t 90 Registering aVisudization Type 110
Predefined iTool Visualization Classes 91 Unregistering a Visualization Type 112
Creating aNew Visualization Type 95 Example: Image-Contour Visualization .. 113

iTool Developer’s Guide 89

90 Chapter 6: Creating a Visualization

Overview

A visualization type is an iTool component object class that contains core IDL
graphic objects (IDLgrPlot objects, for example), other iTool visualization
components, or both. Visualization type components can a so contain data. A number
of visualization types are predefined and included in the IDL iTools package; if none
of the predefined types suits your needs, you can create your own visualization type
by subclassing either from one of the predefined types or from the base
IDLitVisualization class on which all of the predefined types are based.

The Visualization Type Creation Process

To create anew iTool visualization type, you will do the following:

* Choose aniTool visuaization class on which your new visualization type will
be based. In almost all cases, you will base new visualization types either on
the IDLitVisualization class or on avisualization class that isitself based on
IDLitVisualization. The IDLitVisualization class automatically handles
selection, selection visuals, data ranges, and notification of data changes.

« Define the data parameters necessary to create a visualization of the new type.
« Define the properties of the visualization, and set default property values.

* Override methods used to get or set properties, react to changesin the
underlying data, and clean up, as necessary.

This chapter describes the process of creating a new visualization type based on the
IDLitVisualization class.

Overview iTool Developer’s Guide

Chapter 6: Creating a Visualization 91

Predefined iTool Visualization Classes

TheiTool system distributed with IDL includes a number of pre-defined visualization
classes. You can include these visualization classesin an i Tool directly by registering
the class with your i Tool (as described in “Registering a Visualization Type’ on
page 110). You can also create a new visualization class based on one of the pre-
defined classes. Visualization classes are located inthel i b/ i t ool s/ conponent s
subdirectory of the IDL directory.

IDLitVisAXxis
Displays a single axis object.
Data Types Accepted

* None
IDLitVisColorbar

Displaysacolor bar.
Data Types Accepted
» Palettedata: IDLPALETTE

IDLitVisContour

Displays a two-dimensional or three-dimensional contour plot.
Data Types Accepted

e Zdata IDLARRAY2D

e XandY data IDLVECTOR

IDLitVisHistogram

Displays a histogram plot of the input data.
Data Types Accepted
e Histogram data: IDLVECTOR, IDLARRAY 2D, IDLARRAY 3D

IDLitVislmage

Displays an image.

iTool Developer’s Guide Predefined iTool Visualization Classes

92 Chapter 6: Creating a Visualization

Data Types Accepted
¢ Imagedata IDLIMAGE, IDLARRAY 2D
e Pdettedata: IDLPALETTE, IDLARRAY 2D
IDLitVislsosurface

Displays an isosurface created from existing volume data.
Data Types Accepted

* None
IDLitVisLegend

Displays alegend that can contain multiple IDLitVisLegendContourltem,
IDLitVisLegendPlotitem, and IDLitVisLegendSurfacel tem objects.

Data Types Accepted

* None
IDLitVisLight

Places alight abject in the iTool visualization window to illuminate surface and
volume objects.

Data Types Accepted

* None
IDLitVisPlot

Displays a two-dimensional line plot.
Data Types Accepted
e XandY data IDLVECTOR
¢ Vertex data: IDLARRAY 2D
e Xand error data: IDLVECTOR, IDLARRAY 2D

IDLitVisPlot3D

Displays a two-dimensional line plot.
Data Types Accepted
 X,Y,and Z data: IDLVECTOR

Predefined iTool Visualization Classes iTool Developer’s Guide

Chapter 6: Creating a Visualization

* Vertex data: IDLARRAY 2D
* X, Y,and Z error data: IDLVECTOR, IDLARRAY 2D

IDLitVisPolygon

Displays a polygon annotation
Data Types Accepted
e Vertex data: IDLARRAY 2D

IDLitVisPolyline
Displays asingle polyline.
Data Types Accepted
¢ Vertex datat IDLARRAY 2D

IDLitVisRoI

Defines and displays a polygonal region of interest.
Data Types Accepted
¢ Vertex data: IDLARRAY 2D

IDLitVisSurface

Displays a three-dimensional surface plot.
Data Types Accepted
e Z (surface) data: IDLARRAY 2D
« XandY data IDLVECTOR, IDLARRAY 2D
» Vertex color data: IDLVECTOR, IDLARRAY 2D
e Texture maps. IDLARRAY 3D, IDLARRAY 2D
e Pdettecolors: IDLARRAY 2D

IDLitVisText
Displays text string.
Data Types Accepted
* Location data: IDLVECTOR

93

iTool Developer’s Guide Predefined iTool Visualization Classes

94 Chapter 6: Creating a Visualization

IDLitVisVolume

Displays a three-dimensional volume rendering.
Data Types Accepted

¢ Volumedata: IDLARRAY 3D

e Pdettedata: IDLPALETTE

« Opacity table data: IDLOPACITY_ _TABLE

Predefined iTool Visualization Classes iTool Developer’s Guide

Chapter 6: Creating a Visualization 95

Creating a New Visualization Type

AniTool visualization class definition file must (at the least) provide methods to
initialize the visualization class, get and set property values, handle changes to the
underlying data, clean up when the visualization is destroyed, and define the
visualization class structure. Complex visualization types will likely provide
additional methods.

The process of creating avisualization type is outlined in the following sections:

“Creating an Init Method” on page 95

“Creating a Cleanup Method” on page 102

“Creating a GetProperty Method” on page 103

“Creating a SetProperty Method” on page 104

“Creating an OnDataChangeUpdate Method” on page 105
“Creating an OnDataDisconnect Method” on page 107
“Creating the Class Structure Definition” on page 107

Creating an Init Method

The visualization class Init method handles any initialization required by the
visualization object, and should do the following:

define the Init function method
call the Init methods of any superclasses
register any data parameters used when creating visualizations of the new type

register any properties of your visualization type, and set property attributes as
necessary

create al the graphics objects needed by the visualization, and add them to the
visualization object

define a custom selection visudl, if desired
perform other initialization steps as necessary

return the value 1 if the initialization steps are successful, or O otherwise

iTool Developer’s Guide Creating a New Visualization Type

96 Chapter 6: Creating a Visualization

Note
While the Init method registers data parameters for a visualization, it does not
accept data parametersitself. Data parameters are set in the OnDataChangeUpdate
method.

Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method via IDL’s keyword inheritance mechanism. The
Init method for a visualization type generally looks something like this;

FUNCTI ON MyVi sual i zation::Init, MYKEYWORD1 = nykeywordl, $
MYKEYWORD2 = nykeyword2, ..., _REF_EXTRA = _extra

where MyMisualization isthe name of your visualization class and the MYKEYWORD
parameters are keywords handled explicitly by your Init function.

Use keyword inheritance (the _REF_EXTRA keyword) to pass keyword parameters
through to any called routines as necessary. See “Keyword Inheritance” in Chapter 4
of the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.

Superclass Initialization

The visualization class Init method should call the Init method of any required
superclass. For example, if your visualization class is based on an existing
visualization, you would call that visualization’s Init method:

success = self -> SoneVisualizationdass::Init(_EXTRA = _extra)

where SomeMisualizationClass is the class definition file for the visualization on
which your new visualization is based. The variable success will contain alif the
initialization is successful.

Note
Your visualization class may have multiple superclasses. In general, each
superclass’ Init method should be invoked by your class' Init method.

Error Checking

Rather than simply calling the superclass Init method, it is agood ideato check
whether the call to the superclass Init method succeeded. The following statement

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 97

checks the value returned by the superclass Init method; if the returned valueis 0
(indicating failure), the current Init method also immediately returns with avalue of
0:

IF (self -> SonmeVisualizationdass::Init() EQ0) THEN RETURN, 0O

This convention is used in all visualization classes included with IDL. RSI strongly
suggests that you include similar checks in your own class definition files.

Keywords to the Init Method

Properties of the visualization type class can be set in the Init method by specifying
the property names and values as IDL keyword-value pairs. In addition to any
keywords implemented directly in the Init method of the superclass on which you
base your class, the properties of the IDLitVisualization class are available to any
visualization class. See“IDLitVisualization Properties’ in the IDL Reference Guide
manual.

Use keyword inheritance (the _ EXTRA keyword) to pass keyword parameters
through to the superclass as necessary. See “Keyword Inheritance” in Chapter 4 of the
Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.

Standard Base Class

While you can create your new visualization class from any existing visualization
class, in many cases, visualization classes you create will be subclassed directly from
the base class IDLitVisuaization:

IF (self -> IDLitVisualization::Init(_EXTRA = _extra) EQO) $

THEN RETURN, 0

The IDLitVisualization class provides the base i Tool functionality used in the
visualization classes created by RSI. See “ Subclassing from the IDLitVisualization
Class’ on page 108 for details.

Return Value

If al of the routines and methods used in the Init method execute successfully, the
method should indicate successful initialization by returning 1. Other visualization
classes that subclass from your visualization class may check this return value, as
your routine should check the value returned by any superclass Init methods called.

Registering Parameters

Visualization types must register each data parameter used to create the visualization.
Data parameters are described in detail in Chapter 3, “Data Management”.

iTool Developer’s Guide Creating a New Visualization Type

98

Chapter 6: Creating a Visualization

Register a parameter by calling the RegisterParameter method of the IDLitParameter
class:

sel f -> Regi sterParaneter, ParnmaneterName, $
TYPES = [' DataTypel', ..., 'DataTypeN]

where ParameterName is a string that defines the name of the parameter and the
TYPES keyword is set equal to astring or array of strings specifying theiTool system
data types the parameter can represent. See “ Registering Parameters’ on page 41 for
additional details.

Registering Properties

Visualization types can register properties with the iTool; registered properties show
up in the property sheet interface, and can be modified interactively by users. The
iTool property interface is described in detail in Chapter 4, “ Property Management”.

Register a property by calling the RegisterProperty method of the IDLitComponent
class:

self -> RegisterProperty, Propertyldentifier [, TypeCode] $
[, ATTRI BUTE = val ue]

where Propertyldentifier isastring that uniquely identifies the property, TypeCodeis
an integer between 0 and 9 specifying the property datatype, and ATTRIBUTE isa
property attribute. See “ Registering Properties’ on page 54 for details.

Property Aggregation

IDL objects can contain other objects; a visualization typeis, at onelevel, smply an
object container that holds the different graphics objects that make up avisualization.
TheiTools property aggregation mechanism allows the properties of several different
objects held by the same container object to be displayed in the same property sheet

automatically. Without property aggregation, you would have to manually register all
of the properties of the objects contained in your visualization type object.

Aggregate the properties of contained objects using the Aggregate method of the
IDLitVisualization class:

self -> Aggregate, Object_Reference

where Object_Reference is areference to the object whose properties you want
aggregated into the visualization object. See “ Property Aggregation” on page 61 for
additional details.

Note
The IDLitVisualization::Add method includes an AGGREGATE keyword. This
keyword is simply a shorthand method of aggregating the properties of an object

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 99

during the call to the Add method, eliminating the need to call the Aggregate
method separately. The call

self -> Add, bject_Reference, /AGGREGATE
is the same as the following two calls:

self -> Add, bject_ Reference
self -> Aggregate, (bject Reference

Setting Property Attributes

If aproperty has already been registered, perhaps by a superclass of your
visualization class, you can change the registered attribute values using the
SetPropertyAttribute method of the IDLitComponent class:

self -> SetPropertyAttribute, ldentifier

where Identifier is the name of the keyword to the GetProperty and SetProperty
methods used to retrieve or change the value of this property. (The Identifier is
specified in the call to RegisterProperty either via the PropertyName argument or the
IDENTIFIER keyword.) See “Property Attributes’ on page 58 for additional details.

Adding Graphics Objects to the Visualization

AniTool visualization type must contain at least one IDLit* visualization object or
IDLgr* graphics object. To add a visualization or graphics object, you must first
create an instance of the object using the OBJ_NEW function, then add the object
instance to the visualization using the Add method of the IDLitVisualization class:
G aphi cs_Cbject = OBJ_NEW' I DLitVi sCbject')
self -> Add, G aphics_nject
where IDLitVisObject is an actual IDL iTool visualization class, such as
IDLitVisPlot.

In practice, you should also consider the following when adding a visualization or
graphics object to a visualization type:

e Thevisualization or graphics object reference should generally be placed in a
specific field of the visualization type's class structure. This allows you access
to the object when you have the reference to the visualization object itself.

e Inmost cases, you will want to include the REGISTER_PROPERTIES
keyword in the call to OBJ NEW when creating a visualization or graphics
object instance. This keyword does the work of registering all registrable

iTool Developer’s Guide Creating a New Visualization Type

100 Chapter 6: Creating a Visualization

properties of the object automatically, relieving you from the need to manually
register the properties you want to show up in the visualization’s property
sheet.

A typical addition of a graphics object to a visualization looks like this:

self._oPlot = OBJ_NEW' IDLitVisPlot', /REQ STER PROPERTI ES)
self -> Add, self._oPlot, /AGGREGATE

Here, we create anew IDLitVisPlot object instance and place the object reference in
the _oPl ot field of the visualization’s class structure. The REGISTER_PROPERTIES
keyword ensuresthat all of the registrable IDLitVisPlot properties are registered with
the visualization automatically. Next, we use the Add method to add the object
instance to our visualization; this inserts the object into the visualization’s graphics
hierarchy. Finally, we use the AGGREGATE keyword to include al of the
IDLitVisPlot object’s registered properties in the visualization's property sheet.

Passing Through Caller-Supplied Property Settings

If you haveincluded the _ REF EXTRA keyword in your function definition, you can
use IDL's keyword inheritance mechanism to pass any “extra’ keyword values
included in the call to the Init method through to other routines. One of the things this
allowsyou to do is specify property settings when the Init method is called; simply
include each property’s keyword/value pair when calling the Init method, and include
the following in the body of the Init method:

IF (N_ELEMENTS(_extra) GI 0) THEN $
self -> MyVisualization:: SetProperty, _EXTRA = _extra

where MyMisualization isthe name of your visualization class. Thisline hasthe effect
of passing any “extra’ keyword values to your visualization class' SetProperty
method, where the keyword can either be handled directly or passed through to the
SetProperty methods of the superclasses of your class. See “ Creating a SetProperty
Method” on page 104 for details.

Example Init Method

The following example code shows avery simple Init method for avisualization type
named Exanpl eVi s. Thisfunction would beincluded (along with the class structure
definition routine and any other methods defined by the class) in afile named
exanpl evi s__defi ne. pro.

FUNCTI ON Exanpl eVis::lnit, _REF_EXTRA = _extra
; Initialize the superclass.

IF (self -> IDLitVisualization::Init(/REJ STER PROPERTIES, $
TYPE=' Exanpl eVis', NAME=' Exanpl e Vi sual i zation Type', $

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 101

| CON="plot', _EXTRA = _extra) NE 1) THEN $
RETURN, O

Regi ster a paraneter
self -> RegisterParaneter, 'Y, DESCRIPTION="Y Plot Data', $
/1 NPUT, TYPES='I|DLVECTOR , /OPTARGET

; Add a plotting synbol object and aggregate its properties
; into the visualization.

sel f._oSynbol = OBJ_NEW' IDLitSynbol', PARENT = self)

sel f -> Aggregate, self._oSynbol

; Create an IDLitVisPlot object, setting its SYMBOL property to

; the synbol object we just created. Add the plot object to the

; visualization, and aggregate its properties.

self._oPlot = OBJ_NEW'IDLitGPlot', /REA STER PROPERTIES, $
SYMBOL = sel f._oSymbol -> Get Synbol ())

self -> Add, self._oPlot, /AGGREGATE

; Register an exanple property that holds a string val ue.
self -> RegisterProperty, 'Exanpl eProperty', $

/ STRING DESCRI PTI ON='" An exanpl e property', $

NAMVE=' Exanpl e Property', SENSITIVE =1

; Pass any extra keyword paraneters through to the SetProperty
;. et hod.
IF (N_ELEMENTS(_extra) GI 0) THEN $

sel f -> Exanpl eVis::SetProperty, _EXTRA = _extra

; Return success
RETURN, 1

END
Discussion

The Exanpl eVi s classis based on the IDLitVisualization class (discussed in
“Subclassing from the IDLitVisualization Class’ on page 108). Asaresult, al of the
standard features of an iTool visualization class are already present. We don’t define
any keyword values to be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword values through to methods called
within the Init method. The Exanpl eVi s Init method does the following things:

1. CadlstheInit method of the superclass, IDLitVisualization. We use the
REGISTER_PROPERTIES keyword to ensure that all registrable properties of
the superclass are exposed in the ExampleVis object’s property sheet. We also
set the visualization type to be an “ExampleVis,” provide a Name for the
object instance, and provide an icon. Finally, we usethe _EXTRA keyword

iTool Developer’s Guide Creating a New Visualization Type

102 Chapter 6: Creating a Visualization

inheritance mechanism to pass through any keywords provided when the
Exanpl eVi s Init method is called.

2. Registersan input parameter called Y that must be avector. The OPTARGET
keyword specifiesthat the Y parameter can be the target for i Tool operations.

3. Creates aplotting symbol created from the IDLitSymbol class and aggregate
its properties with the other ExampleVis properties.

4. Createsan IDLitGrPlot object that usesthe IDLitSymbol object for its plotting
symbols.

Registers an example property that holds a string value.
Passes any “extra’” keyword properties through to the SetProperty method.
7. Returnstheinteger 1, indicating successful initialization.

Creating a Cleanup Method
The visualization class Cleanup method handles any cleanup required by the

visualization object, and should do the following:

e destroy any objects created by the visualization that were not added to the
graphics hierarchy with acall to the Add method

e cal the superclass' Cleanup method

Calling the superclass cleanup method will destroy any objects that were added to
the graphics hierarchy.

See“|DLitVisualization::Cleanup” in the IDL Reference Guide manual for additional
details.

Example Cleanup Method

The following example code shows a very simple Cleanup method for the
Exanpl eVi s visualization type:

PRO Exanpl eVi s: : C eanup

; Clean up the IDLitSynbol object we created.
OBJ_DESTROY, self._oSynbol

; Call superclass O eanup nethod
self -> IDLitVisualization::C eanup

END

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 103

Discussion

The Cleanup method first destroys the IDLitSymbol object, which is not part of the
graphics hierarchy, then calls the superclass Cleanup method to destroy the objectsin
the graphics hierarchy.

Creating a GetProperty Method

The visualization class GetProperty method retrieves property values from the
visualization object instance or from instance data of other associated objects. The
method can retrieve the requested property value from the visualization object’s
instance data or by calling another class' GetProperty method.

Note
Any property registered with acall to the RegisterProperty method must be listed as
akeyword to the GetProperty method either of the visualization class or one of its

superclasses.

See “IDLitVisualization::GetProperty” in the IDL Reference Guide manual for
additional details.

Example GetProperty Method

The following example code shows a very simple GetProperty method for the
Exanpl eVi s visualization type:
PRO Exanpl eVi s: : Get Property, $

EXAMPLEPROPERTY = exanpl eProperty, $
_REF_EXTRA = _extra

| F ARG_PRESENT(exanpl eProperty) THEN BEGQ N
exanpl eProperty = sel f._exanpl eproperty
ENDI F

; get superclass properties
IF (N_ELEMENTS(_extra) GI 0) THEN $
self -> |DLitVisualization::CGetProperty, _EXTRA = _extra

END
Discussion

The GetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the visualization type. The keyword inheritance
mechanism allows propertiesto be retrieved from the ExampleVisclass superclasses
without knowing the names of the properties.

iTool Developer’s Guide Creating a New Visualization Type

104 Chapter 6: Creating a Visualization

Using the ARG_PRESENT function, the method checks for the presence of
keywords in the call to the GetProperty method. If akeyword is detected, it retrieves
the value of the associated property from the object’s instance data. In this example,
only one property (ExampleProperty) is specific to the Exanpl eVi s object.

Finally, the method calls the superclass’ GetProperty method, passing in al of the
keywords stored in the _EXTRA structure.

Creating a SetProperty Method

The visualization class SetProperty method stores property valuesin the visualization
object’s instance data or in properties of associated objects. It sets the specified
property value either by storing the value directly in the visualization object’s
instance data or by calling another class' SetProperty method.

Note
Any property registered with a call to the RegisterProperty method must belisted as
akeyword to the SetProperty method either of the visualization class or one of its
superclasses.

See " IDLitVisualization::SetProperty” in the IDL Reference Guide manual for
additional details.

Example SetProperty Method

The following example code shows a very simple SetProperty method for the
Exanpl eVi s visuaization type:

PRO Exanpl eVi s:: Set Property, $
EXAMPLEPROPERTY = exanpl eProperty, $
_EXTRA = _extra

| F (N_ELEMENTS(exanpl eProperty) GI 0) THEN BEG N
sel f. _exanpl eProperty = exanpl eProperty
ENDI F

I F (N_ELEMENTS(_extra) GI 0) THEN $
self -> IDLitVisualization::SetProperty, _EXTRA = _extra

END
Discussion

The SetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the visualization type. The keyword inheritance

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 105

mechanism allows properties to be set on the Exanpl eVi s class superclasses
without knowing the names of the properties.

Using the N_ELEMENTS function, we check to see whether a value was specified
for each keyword. If avalueis detected, we set the value of the associated property. In
this example, only one property (ExampleProperty) is specific to the Exanpl eVi s
object. We set the value of the ExampleProperty directly in the Exanpl eVi s object’s
instance data.

Finally, we call the superclass' SetProperty method, passing in al of the keywords
stored inthe EXTRA structure.

Creating an OnDataChangeUpdate Method

The visualization class OnDataChangeUpdate method takes care of updating the
visualization when one or more of the data parameters used to create the visualization
change their values. The tasks this method must perform are dependent on the type of
visualization involved and the data parameter that changes. The general ideaiis that
when the value of a data object changes, the OnDataChangeUpdate method for each
visualization that uses that datais called. The OnDataChangeUpdate method then
uses the GetData method to retrieve the changed data from the IDLitData object,
inspects the data and manipulates it as necessary, and uses the SetProperty method to
insert the new data values into the visualization object.

See “|IDLitParameter::OnDataChangeUpdate” in the IDL Reference Guide manual
and “Data Update Mechanism” on page 45 for additional details.

Example OnDataChangeUpdate Method

The following example code shows avery simple OnDataChangeUpdate method for
the Exanpl eVi s visualization type:

PRO Exanpl eVi s: : OnDat aChangeUpdat e, oSubj ect, par mNane
CASE STRUPCASE(par mNane) OF

' <PARAMETER SET>': BEG N
oParans = oSubject -> Get(/ALL, COUNT = nParam $
NAME = par anNanes)
FOR i = 0, nParam1 DO BEG N
I F (paramNanes[i] EQ '') THEN CONTI NUE
oData = oSubj ect -> Get ByNanme(paramNanmes[i])
IF (OBJ_VALI D(oData)) THEN $
sel f -> OnDat aChangeUpdat e, oData, paramNanmes[i]
ENDFOR
END

iTool Developer’s Guide Creating a New Visualization Type

106 Chapter 6: Creating a Visualization

"Y': BEGN
success = oSubject -> GetData(data)
nDat a = N_ELEMENTS(dat a)
IF (nData GI 0) THEN BEG N
; Set the min/max val ues.
mnn = M N(data, MAX = maxx)
sel f._oPlot -> SetProperty, DATAY = TEMPCRARY(data), $
M N_VALUE = m nn, MAX VALUE = naxx
ENDI F
END
ELSE: self -> ErrorMessage, 'Unknown paraneter'
ENDCASE

END
Discussion

The OnDataChangeUpdate method must accept two arguments. an object reference
to the data object whose data has changed (oSubj ect in the previous example), and
a string containing the name of the parameter associated with the data object

(par mNane in the example).

Note
The string <PARAMETER SET> isaspecial case valuefor the second argument, used
to indicate that the object reference is not a single data object but a parameter set.
Calling OnDataChangeUpdate with a parameter set rather than a dataitem provides
asimpleway to update a group of datavaluesin with asingle statement; this can be
very useful when creating the visualization for the first time.

We use a CASE statement to determine which parameter has been modified, and
process the data as appropriate. We first handle the special case where the parameter
has the value <PARAMETER SET> by looping through all of the parametersin the
parameter set object, calling the OnDataChangeUpdate method again on each
parameter.

Next, we handle the parameter (Y) by calling the IDLitData:: GetData method on the
data object reference stored in the oSubj ect argument. The second argument (the
string ' | DLVECTOR) instructs the GetData method to retrieve only data of vector
type. We use the N_ELEMENTS function to determine whether any data was
returned. If data was returned, we determine the minimum and maximum val ues.
Finally, we use the SetProperty method to insert the changed data (using the
TEMPORARY function to avoid making a copy of the data) into the DATAY property
of the IDLitVisPlot object stored in the visualization's _oPI ot class structure field.
Similarly, we insert the new minimum and maximum values into the MIN_VALUE
and MAX_VALUE properties of the IDLitVisPlot abject.

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 107

Creating an OnDataDisconnect Method

The visualization class OnDataDisconnect method is called automatically when a
data value has been disconnected from a parameter. A visualization class based on the
IDLitVisualization class must implement this method in order for changes or
additions to the data parameters to be updated automatically in the resulting
visualizations. The general ideais that when a dataitem is disassociated from a
visualization parameter, one or more properties of the visualization may need to be
reset to reasonable default values. For example, in the case of aplot visualization, if
the plotted data is disconnected, we want to reset the data ranges to their default
values and hide the plot visualization.

See “|IDLitParameter::OnDataDisconnect” in the IDL Reference Guide manual for
additional details.

Example OnDataDisconnect Method
PRO Exanpl eVi s: : OnDat aDi sconnect, ParnNane

CASE Par mNanme OF
'Y': BEGN
self._oPlot -> SetProperty, DATAX = [0, 1], DATAY = [0, 1]
self._oPlot -> SetProperty, /H DE
END

ELSE:
ENDCASE

END
Discussion

The OnDataDisconnect method takes a single argument, which contains the upper-
case name of the parameter that was disconnected. In the case of our Exanpl eVi s
visualization, we only need to handle the Y parameter. If the Y parameter is
disconnected, we set the data ranges of the plot object to their default values (the
range between 0 and 1), and hide the plot visualization using the HIDE property.

Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
data types of those fields. The object class structure must have been defined before
any objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure

iTool Developer’s Guide Creating a New Visualization Type

108 Chapter 6: Creating a Visualization

named Obj ect C ass__def i ne (where ObjectClassis the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle” in Chapter 22 of the Building IDL Applications manual.

Subclassing from the IDLitVisualization Class

The IDLitVisualization class serves as a container for visualization objects displayed
inaniTool. The classincludes methods to handle changes to data and property values
automatically; in almost al cases, new visualization typeswill be subclassed from the
IDLitVisualization class. See “IDLitVisualization” in the IDL Reference Guide
manual for details on the methods properties available to classes that subclass from
IDLitVisualization.

Example Class Structure Definition

The following isthe class structure definition for the Exanpl eVi s visualization
class. This procedure should be the last procedure in afile named
exanpl evi s__defi ne. pro.

PRO Exanpl eVi s__Defi ne

struct = { ExanpleVis, $
INHERI TS I DLitVisualization, $
_oPlot: OBJ_NEW), $
_oSynbol : OBJ_NEW), $
_exanpl eProperty: $

}

END

Discussion

The purpose of the structure definition routine isto define anamed IDL structure
with structure fields that will contain the visualization object instance data. The
structure name should be the same as the visualization’s class name — in this case,
Exanpl eVi s.

Like many iTool visualizations, Exanpl eVi s is created as a subclass of the
IDLitVisualization class. Visualization classes that subclass from the
IDLitVisualization classinherit all of the standard i Tool visualization features, as
described in “ Subclassing from the IDLitVisualization Class’ on page 108.

The ExampleVis visualization class instance data includes two graphics objects: an
IDLitVisPlot object, to which areferenceisstored inthe_oPI ot class structurefield,
and an IDLitVisSymbol object, to which areferenceis stored inthe _oSynbol class

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 109

structure field. Both graphics objects are defined in the class structure definitions as
object instances, denoted by the presence of the OBJ_NEW) after the structure field
name. Finally, instance data for a string property named Exanpl ePr operty is
stored in the _exanpl ePr oper t y class structure field.

Note
This example is intended to demonstrate how simple it can be to create a new
visualization class definition. While the class definition for a visualization class
with significant extrafunctionality will likely define additional structure fields, and
may inherit from other iTool classes, the basic principles are the same.

iTool Developer’s Guide Creating a New Visualization Type

110 Chapter 6: Creating a Visualization

Registering a Visualization Type

Before avisuaization of agiven type can be created by an iTool, the visualization
type’s class definition must be registered as being available to theiTool. Registering a
visualization type with theiTool links the class definition file containing the actual
IDL code that defines the visualization type with a simple string that names the type.
Code that creates a visuaization in an iTool uses the name string to specify which
type of visualization should be created. In addition, some operations and
manipulators will operate only on specific visualization types; these limits are also
specified using the name string.

Using IDLitTool::RegisterVisualization

In most cases, you will register avisualization type with theiTool in theiTool’s class
Init method. Registration ensures that the visualization type is available when the
iTool attempts to create a visualization. (See “Creating a New iTool Class’ on

page 69 for details on theiTool class Init method.)

To register avisualization, call the IDLitTool::RegisterVisualization method:

self -> RegisterVisualization, Visualization_Type, $
Vi sType_d ass_Nane

where Visualization_Type isthe string you will use when referring to the visualization

type, and VisType_Class Nameisastring that specifiesthe name of the classfile that
contains the visualization type's definition.

Note
ThefileVi sType_Cl ass_Nane__defi ne. pr o must exist somewherein IDL’s

path for the visualization type to be successfully registered.

See “IDLitTool::RegisterVisualization” in the IDL Reference Guide manual for
details.

Specifying Useful Properties

You can set any property of the IDLitVisualization and IDLitComponent classes
when registering a visualization. The following properties may be of particular
interest:

Registering a Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 111

ICON

A string value giving the name of anicon to be associated with this object. Typically,
this property is the name of a bitmap file to be used when displaying the object in a
tree view. See “lcon Bitmaps’ on page 28 for details on where bitmap icon files are
located.

TYPE

A string or an array of strings indicating the types of datathat can be displayed by the
visualization. i Tools data types are described in Chapter 3, “ Data Management”. Set
this property to anull string (' ') to specify that all types of data can be displayed.

iTool Developer’s Guide Registering a Visualization Type

112 Chapter 6: Creating a Visualization

Unregistering a Visualization Type

If you are creating anew iTool from an existing iTool class, you may want to remove
avisualization type registered with the existing class from your new tool. This can be
useful if you have aniTool classthat implements all of the functionality you need, but
which registers a visualization type you don’t want included in your iTool. Rather
than recreating theiTool classto remove the visualization type, you could create your
new iTool classin such away that it inherits from the existing iTool class, but
unregisters the unwanted visualization.

Unregister avisualization type by calling the IDLitTool::UnregisterVisualization
method in the Init method of your iTool class:

self -> UnregisterVisualization, identifier
where identifier isthe string name used when registering the visualization.

For example, suppose you are creating a new iTool that subclasses from the standard
iSurface tool, which is defined by the IDLitTool Surface class. If you wanted your
new tool to behave just like the i Surface tool, with the exception that it would not
handle 2D plot visualizations, you could include the following method call in your
iTool’s Init method:

self -> UnregisterVisualization, 'Plot'
Finding the Identifier String

To find the string value used asthe identifier parameter to the UnregisterVisualization
method, you must inspect the class file that registers the visualization. In the case of
our example, youwould inspect thefilei dl i t t ool surface__defi ne. protofind
the following call to the RegisterVisualization method:

self -> RegisterVisualization, 'Plot', '"IDLitVisPlot', $

ICON = 'plot'

Thefirst argument to the RegisterVisualization method (' Pl ot ') isthe string name
of the visualization type.

Unregistering a Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 113

Example: Image-Contour Visualization

This example createsavisualization type named vi s| mageCont our that displaysan
image and overlays it with a contour based on the image data.

Class Definition File

The class definition for vi s| mageCont our consists of an Init method, an
OnDataChangeUpdate method, and a class structure definition routine. Other
important methods — Cleanup, GetProperty, and SetProperty — are handled by the
superclass (I DLi t Vi sual i zat i on).

Aswith all object class definition files, the class structure definition routine isthe last
routine in the file, and the file is given the same name as the class definition routine
(with the suffix . pr o appended).

Init Method

The Init method is called when the visimageContour visualization is created.
FUNCTI ON vi sl mageContour::Init, _EXTRA = _extra

; Initialize the superclass
IF (~self -> IDLitVisualization::Init(NAME='vi sl mageContour', $
ICON = "image', _EXTRA = _extra)) THEN RETURN, O

Regi ster the paraneters we are using FOR data
self -> RegisterParanmeter, '|MAGEPI XELS' , $
DESCRI PTION = 'Inmage Data', /INPUT, $
TYPES = ['|DLI MAGEPI XELS', '|DLARRAY2D], /OPTARCET
sel f -> Regi sterParameter, 'PALETTE , $
DESCRI PTION = 'Pal ette', /INPUT, /OPTIONAL, $
TYPES = [' | DLPALETTE',' | DLARRAY2D], / OPTARGET

; Create objects and add to this Visualization

self._olmge = OBJ_NEW'IDLitVislmage', _EXTRA = _extra)
self -> Add, self._ol mage, /AGGREGATE

sel f._oContour = OBJ_NEW' IDLitVisContour', _EXTRA = _extra)
self -> Add, self._oContour, /AGGREGATE

; Return success
RETURN, 1

END

iTool Developer’s Guide Example: Image-Contour Visualization

114 Chapter 6: Creating a Visualization

Discussion

Thefirstitem in our class definition fileisthe Init method. The Init method’s function
signature is defined first, using the class name vi sI mageCont our . Note the use of
the _EXTRA keyword inheritance mechanism; this allows any keywords specified in
acall to the Init method to be passed through to routines that are called within the Init
method even if we do not know the names of those keywords in advance.

First, we call the Init method of the superclass. In this case, we are creating a subclass
of the IDLitVisualization class; this provides us with all of the standard i Tool
visualization methods automatically. Any “extra’ keywords specified in the call to
our Init method are passed to the IDLitVisualization::Init method via the keyword
inheritance mechanism. If the call to the superclass Init method fails, we return
immediately with avalue of O.

We register two parameters used by our visualization: | MAGEPI XELS and PALETTE.
Both parameters are input parameters (meaning they are used to create the
visualization), and both can be the target of an operation. The | MAGEPI XELS
parameter can contain data of two iTool datatypes: | DLI MAGEPI XELS or

| DLARRAY2D. When data are assigned to the visualization’s parameter set, only data
that matches one of these two types can be assigned to the | MAGEPI XEL S parameter.
Similarly, the PALETTE parameter can contain data of type | DLPALETTE or

| DLARRAY2D.

Next, we create the two visualization components that make up the vislmageContour
visualization type: an IDLitVisimage object and an IDLitVisContour object. Each
object is created by a call to the OBJ_NEW function; the newly-created object
referenceis placed in afield of the visimageContour object’s instance data structure.
The new visualization objects are then added to the visl mageContour object using the
Add method; the AGGREGATE keyword specifies that the properties of each of the
component visualization objects will be displayed as properties of the
vislmageContour object itself.

Finally, we return 1, indicating a successful initialization.
OnDataChangeUpdate Method

The OnDataChangeUpdate method is called whenever the data associated with the
visimageContour visualization object changes. This may include the initial creation
of the visualization, if data parameters are specified in the call to the iTool launch
routine that creates the visualization.

Example: Image-Contour Visualization iTool Developer’s Guide

Chapter 6: Creating a Visualization 115

PRO vi sl mageCont our : : OnDat aChangeUpdat e, oSubj ect, parmNane, $
REF EXTRA = _extra

Branch based on the value of the parnmNane string.
CASE STRUPCASE(par mNane) OF

; The nmethod was called with a paranter set as the argunent.
' <PARAMETER SET>': BEG N
oParans = oSubject -> Get(/ALL, COUNT = nParam $
NAME = par anNanes)
FOR i = 0, nParam1 DO BEG N
| F (paranNanes[i] EQ '') THEN CONTI NUE
oDat a = oSubj ect -> GetByNane(paramNanmes[i])
IF (OBJ_VALID(oData)) THEN $
sel f -> OnDat aChangeUpdat e, oData, paranmNanmes[i]
ENDFOR
END

; The nmethod was called with an image array as the argument.
"1 MAGEPI XELS' : BEG N
void = self._olmage -> SetData(oSubject, $
PARAMETER_NAME = ' | MAGEPI XELS')
void = self._oContour -> SetData(oSubject, $
PARAMETER _NAME = ' Z')
; Make our contour appear at the top OF the surface.
I F (oSubj ect -> GetData(zdata)) THEN $
sel f._oContour -> SetProperty, ZVALUE = MAX(zdat a)
END

; The method was called with a palette as the argument.
" PALETTE' : BEG N
void = self._olmage -> SetData(oSubject, $
PARAVETER _NAME = ' PALETTE')
void = self._oContour -> SetData(oSubject, $
PARAVETER _NAME = ' PALETTE')
END

ELSE: ; DO nothing
ENDCASE

END
Discussion

The OnDataChangeUpdate method accepts the two required arguments: an object
reference to the data object whose data has changed (oSubj ect), and a string
containing the name of the parameter associated with the data object (par mNane).

iTool Developer’s Guide Example: Image-Contour Visualization

116

Chapter 6: Creating a Visualization

We use a CASE statement to determine which parameter has been modified, and
process the data as appropriate. We first handle the special case where the parameter
has the value <PARAMETER SET> by looping through all of the parametersin the
parameter set object, calling the OnDataChangeUpdate method again on each
parameter.

We handle the | MAGEPI XELS parameter by calling the IDLitParameter::SetData
method once on each of the two component visualizations, specifying that the input
data object oSubj ect corresponds to the | MAGEPI XELS parameter of the
IDLitVislmage object, and to the Z parameter of the IDLitVisContour object. We also
set the Z value of the IDLitVisContour object using the maximum data value of the
data contained in oSubj ect .

Finally, we handle the PALETTE parameter by calling the SetData method again, this
time to set the PALETTE parameters of both the IDLitVisimage and IDLitVisContour
objects.

OnDataDisconnect Method

The OnDataDisconnect method is called automatically when a data value has been
disconnected from a parameter.

PRO vi sl mageCont our : : OnDat aDi sconnect, Par mNane
CASE STRUPCASE(par mane) OF

"1 MAGEPI XELS' : BEG N
self -> SetProperty, DATA =0
self._olmage -> SetProperty, /H DE
sel f._oContour -> SetProperty, /H DE
END

' PALETTE' : BEG N

sel f._olmage -> SetProperty, PALETTE = OBJ_NEW)

self -> SetPropertyAttribute, 'PALETTE , SENSITIVE = 0O
END

ELSE: ; DO nothing
ENDCASE

END
Discussion

The OnDataDisconnect method takes a single argument, which contains the name of
the parameter that was disconnected. In the case of our vi s| mageCont our
visualization, we handle the | MAGEPI XELS and PALETTE parameters. For the

Example: Image-Contour Visualization iTool Developer’s Guide

Chapter 6: Creating a Visualization 117

| MAGEPI XELS parameter, we set the DATA property of the parameter to 0, and hide
both the image and the contour visualizations. For the PALETTE parameter, we set the

PALETTE property of the image to a null object, and desensitize the property in the
property sheet display.

Class Definition

PRO vi sl mageCont our __Defi ne
struct = { vislnmageContour, $
inherits IDLitVisualization, $
_oContour: OBJ_NEW), $
_olmage: OBJ_NEW) $
}
END

Discussion

Our class definition routine creates an IDL structure variable with the name
vi sl mageCont our, specifying that the structure inherits from the
IDLitVisualization class. The structure has two instance data fields named
_oCont our and_ol nage, which will contain object referencesto the

IDLitVisimage and IDLitVisContour objects that make up the vislmageContour
visualization.

iTool Developer’s Guide Example: Image-Contour Visualization

118 Chapter 6: Creating a Visualization

Example: Image-Contour Visualization iTool Developer’s Guide

Chapter 7:

Creating an Operation

This chapter describes the process of creating an iTool operation.

OVEIVIEW ..ot 120
Predefined iTool Operations 122
Operations and the Undo/Redo System . . . 123
Creating aNew Data-Centric Operation .. 125

iTool Developer’s Guide

Creating a New Generalized Operation .. 138
Registering an Operation 153
Unregistering an Operation 155
Example: Data Resample Operation 156

119

120

Chapter 7: Creating an Operation

Overview

An operation isan iTool component object class that can be used to modify selected
data, change the way avisuaization is displayed in the iTool window, or otherwise
affect the state of the iTool. Some examples of iTool operations are:

e performing the IDL SMOOTH operation on selected data,
* rotating a selected visualization by a specified angle,
e displaying data statistics.

A number of standard operations are predefined and included in the IDL iTools
package; if none of the predefined operations suits your needs, you can create your
own operation by subclassing either from the base IDLitOperation class on which all
of the predefined operations are based, from the IDLitDataOperation class, or from
one of the predefined operations.

The Operation Creation Process

Overview

To create anew iTool operation, you will do the following:

¢ Choose aniTool operation class on which your new operation will be based. In
most cases, the operation will act on the data underlying a visualization; in
these cases, you will base your new operation on the IDLitDataOperation
class. If your operation will affect something other than data— the appearance
of visualizations in theiTool window, or the value of some property — you
will base your new class on the IDLitOperation class. Both classes provide
support for the iTool undo/redo system, but operations that do not deal directly
with data require additional code to properly allow for undoing and redoing the
operations.

« Define the properties of the operation, and set default property values.

e |If the new operation acts directly on data (that is, if it is based on the
IDLitDataOperation class), provide an Execute method that performs the
operation using the current property values. Similarly, if the new operationis
more general and is based on the IDLitOperation class, provide a DoAction
method.

e Optionally provide a DoExecuteUl method to display a user interface for
operations that act directly on data.

* For generalized operations, provide UndoOperation and RedoOperation
methods to undo and redo the operation. These methods may in turn require

iTool Developer’s Guide

Chapter 7: Creating an Operation 121
that you provide methods to store values before and after the operationis
executed.

¢ Overide methods used to get or set properties, react to changesin the
underlying data, and clean up, as necessary.

This chapter describes the process of creating new operations based on the
IDLitDataOperation and I DLitOperation classes.

iTool Developer’s Guide Overview

122 Chapter 7: Creating an Operation

Predefined iTool Operations

TheiTool system distributed with IDL includes a number of pre-defined operations.
You can include these operationsin an iTool directly by registering the class with
your iTool (as described in “ Registering an Operation” on page 153). You can also
create a new operation class based on one of the pre-defined classes.

IDLitOpBytscl

Scales the values contained in atwo-dimensional array into the range of 0-255
Data Types Accepted
e IDLARRAY2D

IDLitOpConvolution

Displays adiaog that allows the user to choose convolution settings, then calls the
CONVOL function on the selected data using the specified parameters.

Data Types Accepted
* |IDLVECTOR, IDLARRAY 2D, IDLIMAGE

IDLitOpCurvefitting

Displaysadialog that allows the user to select a curve-fitting algorithm, then callsthe
appropriate IDL routine to perform the fit. The fitted curve is then created and
inserted into the visualization as a new plot line.

Data Types Accepted
 |IDLVECTOR

IDLitOpSmooth

Callsthe SMOOTH function on the selected data. The smoothing window parameter
can be set by the user viathe property sheet interface of the Operations browser.

Data Types Accepted
* |IDLVECTOR, IDLARRAY2D

Predefined iTool Operations iTool Developer’s Guide

Chapter 7: Creating an Operation 123

Operations and the Undo/Redo System

TheiTools system provides userswith the ability to interactively undo and redo
actions performed on visualizations or dataitems. Asan iTool developer, you will
need to provide some code to support the undo/redo feature; the amount of code
required depends largely on the type of operation your operation class performs. The
main dividing lineis between data-centric operations that act directly on the data that
underlies avisualization, and operations that act in a more generalized way, changing
some value that may not be directly related to adataitem. In most cases, operations
that act directly on data are based on the IDLitDataOperation class, whereas
operations that are more generalized are based on the IDLitOperation class.

Data-Centric Operations

Undo/redo functionality is handled automatically for data-centric operations based on
the IDLitDataOperation class. The following things happen when the user requests an
operation:

For each selected item, data that matches the type supported by the operationis
extracted and passed to the operation’s Execute method. The Execute method
modifies the datain place. When the data changes, all visualizations that
observe the dataitem are notified, and update accordingly.

If the user undoes the operation, the original data values are restored. By
default, the original values are cached before the Execute method is called, and
undoing the operation simply retrieves the data values from the cache. If the
REVERSIBLE_OPERATION property of the IDLitDataOperation object is
set, however, the original values are not cached, and the UnExecute method is
called when the user undoes the operation. The UnExecute method must exist
and must reverse the action performed by the Execute method, restoring the
dataitemsto their original values. Using the REVERSIBLE_OPERATION
property allows you to avoid caching the data set (which may be large) when
the operation performed on the datais easily reversed by computation.

If the user redoes the operation, the data values computed by the Execute
method are restored. By default, the Execute method is simply called again. If
the EXPENSIVE_OPERATION property of the IDLitDataOperation object is
set, however, the computed values are cached after the Execute method is
called, and redoing the operation simply restores the cached data values. Using
the EXPENSIVE_OPERATION property allows you to avoid having to
recompute a computationally-intensive operation each time the user undoes
and then redoes the operation.

iTool Developer’s Guide Operations and the Undo/Redo System

124 Chapter 7: Creating an Operation

Generalized Operations

To provide undo/redo functionality, generalized operations (those based on the
IDLitOperation class) must provide methods that record the initial and final values of
the item being modified, along with methods that use the recorded values to undo or
redo the operation. The following things happen when the user requests an operation:

¢ The DoAction method creates an IDLitCommandSet object to hold the initial
and final values.

¢ The RecordInitial Values method records the original values of the specified
target objects. Values are stored as dataitems in IDLitCommand objects,
which are in turn stored in the IDLitCommandSet object.

¢ The RecordFinalValues method retrieves the IDLitCommand objects created
by the Recordlnitial Values method from the IDLitCommandSet object, and
records the new values of the target objects as additional itemsin those
IDLitCommand objects.

e If the user undoes the operation, the UndoOperation method retrieves the
IDLitCommand objects from the IDLitCommandSet object, selects the
relevant data items from each, and restores the values.

¢ If the user redoes the operation, the RedoOperation method retrieves the
IDLitCommand objects from the IDLitCommandSet object, selects the
relevant data items from each, and restores the val ues.

Operations and the Undo/Redo System iTool Developer’s Guide

Chapter 7: Creating an Operation 125

Creating a New Data-Centric Operation

iTool operationsthat act primarily on data are based on the I DLitDataOperation class.
The class definition file for an IDLitDataOperation object must (at the least) provide
methods to initialize the operation class, get and set property values, execute the
operation, and define the operation class structure. Complex operations will likely
provide additional methods.

How an IDLitDataOperation Works

When an IDLitDataOperation is requested by a user, the following things occur:

1. Aswith any operation, execution commences when the DoAction method is
called. When called, the IDLitDataOperation retrieves the currently-sel ected
items. If nothing is selected, the operation returns.

2. For each selected item, the data objects of the parameters registered as
“operation targets’ are retrieved.

3. Thedataobjectsare queried for i Tool datatypesthat match the types supported
by the IDLitDataOperation.

For each data object that includes data of an iTool data type supported by the
IDLitDataOperation, the following things occur:

1. Thedatafrom the data object isretrieved.

2. If the IDLitDataOperation does not have the REVERSIBLE OPERATION
property set, a copy of the datais created and placed into the undo-redo
command set.

The Execute method is called, with the retrieved data as its argument.

If the Execute method succeeds and the I DLitDataOperation has the
EXPENSIVE_OPERATION property set, acopy of the resultsis placed into
the undo-redo command set.

5. Theresult of the IDLitDataOperation is placed in the data object. This action
will cause all visualization items that use the data object to update when the
operation is compl eted.

Once all selected data items have been processed, the undo-redo command set is
placed into the system undo-redo buffer for later use.

iTool Developer’s Guide Creating a New Data-Centric Operation

126 Chapter 7: Creating an Operation

Creating an IDLitDataOperation

The process of creating an IDLitDataOperation is outlined in the following sections:
e “Creating an Init Method” on page 126
e “Creating a Cleanup Method” on page 130
e “Creating an Execute Method” on page 131
e “Creating a DoExecuteUl Method” on page 132
e “Creating a GetProperty Method” on page 133
e “Creating a SetProperty Method” on page 134
e “Creating an UndoExecute Method” on page 135
e “Creating the Class Structure Definition” on page 136
Creating an Init Method
The operation class Init method handles any initialization required by the operation
object, and should do the following:
¢ define the Init function method
e cal the Init methods of any superclasses
e register any properties of the operation, and set property attributes as necessary
e perform other initialization steps as necessary

e return thevalue 1if the initialization steps are successful, or 0 otherwise
Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method via IDL’s keyword inheritance mechanism.

Note
Because iTool operations are invoked by the user’s interactive choice of anitem
from amenu, they generally do not accept any keywords of their own.

Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 127

The function signature of an Init method for an operation generally looks something
likethis:

FUNCTI ON MyOperation::Init, _EXTRA = _extra
where MyOperation is the name of your operation class.

Use keyword inheritance (the _ EXTRA keyword) to pass keyword parameters
through to any called routines as necessary. (See “Keyword Inheritance” in Chapter 4
of the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.)

Superclass Initialization

The operation class Init method should call the Init method of any required
superclass. For example, if your operation classisbased on an existing operation, you
would call that operation’s Init method:

success = self -> SoneQperationd ass::Init(_EXTRA = _extra)

where SomeOperationClass is the class definition file for the operation on which
your new operation is based. The variable success containsal if theinitialization
was successful.

Note
Your operation class may have multiple superclasses. In general, each superclass
Init method should be invoked by your class' Init method.

Error Checking

Rather than simply calling the superclass Init method, it is agood ideato check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method; if the returned valueis 0
(indicating failure), the current Init method also immediately returns with a value of
O:

IF (self -> SomeQperationdass::Init() EQ0) THEN RETURN, O
This convention is used in all operation classes included with IDL. RSI strongly
suggests that you include similar checks in your own class definition files.
Keywords to the Init Method

Properties of the operation class can be set in the Init method by specifying the
property names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitOperation class and the IDLitComponent class are

iTool Developer’s Guide Creating a New Data-Centric Operation

128

Chapter 7: Creating an Operation

available to any operation class. See “IDLitOperation Properties’ and
“IDLitComponent Properties’ in the IDL Reference Guide manual.

Use keyword inheritance (the EXTRA keyword) to pass keyword parameters
through to the superclass as necessary. (See “Keyword Inheritance” in Chapter 4 of
the Building IDL Applications manual for details on IDL’'s keyword inheritance
mechanism.)

Standard Base Class

While you can create your new operation class from any existing operation class, in
many cases, data-centric operation classes you create will be subclassed directly from
the base class I DLitDataOperation:

IF (self -> IDLitDataCperation::lnit(_EXTRA = _extra) EQO0) $
THEN RETURN, O

The IDLitDataOperation class provides the base i Tool functionality used in the data-
centric operation classes created by RSI. See “ Subclassing from the
IDLitDataOperation Class’ on page 136 for details.

Return Value

If al of the routines and methods used in the Init method execute successfully, it
should indicate successful initialization by returning 1. Other operation classes that
subclass from your operation class may check this return value, as your routine
should check the value returned by any superclass Init methods called.

Registering Properties

Operations can register properties with theiTool; registered properties show up in the
property sheet interface, and can be modified interactively by users. The iTool
property interface is described in detail in Chapter 4, “Property Management”.

Register a property by calling the RegisterProperty method of the IDLitComponent
class:

self -> RegisterProperty, Propertyldentifier [, TypeCode] $
[, ATTRI BUTE = val ue]

where Propertyldentifier isastring that uniquely identifies the property, TypeCodeis
an integer between 0 and 9 specifying the property datatype, and ATTRIBUTE isa
property attribute. See “ Registering Properties” on page 54 for details.

Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 129

Setting Property Attributes

If aproperty has already been registered, perhaps by a superclass of your operation
class, you can change the registered attribute values using the SetPropertyAttribute
method of the IDLitComponent class:

self -> SetPropertyAttribute, ldentifier

where ldentifier is the name of the keyword to the GetProperty and SetProperty
methods used to retrieve or change the value of this property. (The Identifier is
specified in the call to RegisterProperty either via the PropertyName argument or the
IDENTIFIER keyword.) See “Property Attributes” on page 58 for additional details.

Example Init Method

The following example code shows a very simple Init method for an operation named
Exanpl eDat aOp. This function would be included (along with the class structure
definition routine and any other methods defined by the class) in afile named
exanpl edat aop__defi ne. pro.

FUNCTI ON Exanpl eDataQp: : I nit, _EXTRA = _extra

Initialize the superclass.
IF (self -> |DLitDataQperation::Init(TYPES=['IDLIMAGE], $
NAME=' Exanpl e Data Operation', |CON='sum, $
_EXTRA = _extra) NE 1) THEN $
RETURN, O

Regi ster a property that holds a byte val ue.
self -> RegisterProperty, 'ByteTop', $
DESCRI PTI ON=' An exanpl e property', $
NAME=' Byte Threshold', SENSITIVE = 1

Return success
RETURN, 1

END
Discussion

The Exanpl eDat a0p classis based on the IDLitDataOperation class (discussed in
“Subclassing from the IDLitDataOperation Class’ on page 136). Asaresult, all of
the standard features of an iTool data operation are already present. We don’t define
any keyword valuesto be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword values through to methods called
within the Init method. The Exanpl eDat aOp Init method does the following things:

iTool Developer’s Guide Creating a New Data-Centric Operation

130 Chapter 7: Creating an Operation

1. CadlstheInit method of the superclass, IDLitDataOperation. We use the
TY PES keyword to specify that our operation works on data that has the iTool
datatype' | DLI MAGE' , provide aname for the object instance, and provide an
icon. Finally, we use the EXTRA keyword inheritance mechanism to pass
through any keywords provided when the Exanpl eDat aOp Init method is
called.

2. Registers aproperty that holds a byte value.
3. Returnstheinteger 1, indicating successful initialization.

Creating a Cleanup Method
The operation class Cleanup method handles any cleanup required by the operation
object, and should do the following:
e destroy any pointers or objects created by the operation

e cal the superclass Cleanup method

Calling the superclass cleanup method will destroy any objects created when the
superclass was initialized.

Note
If your operation classis based on the IDLitDataOperation class, and does not
create any pointers or objects of its own, the Cleanup method is not strictly
required. It is always safest, however, to create a Cleanup method that calls the
superclass’ Cleanup method.

See “IDLitDataOperation::Cleanup” in the IDL Reference Guide manual for
additional details.

Example Cleanup Method

The following example code shows a very simple Cleanup method for the
Exanpl eDat aOp operation:

PRO Exanpl eDat aOp: : Cl eanup

; Cl eanup supercl ass
self -> | DLitDataQOperation:: C eanup

END

Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 131

Discussion

Since our operation’s instance data does not include any pointers or object references,
the Cleanup method simply calls the superclass Cleanup method.

Creating an Execute Method

The operation class Execute method does the computational work of a data-centric
operation; it is called automatically when theiTool user requests an operation based
on the IDLitDataOperation class. The Execute method must accept a single argument
that contains the raw data associated with an item selected by the user.

The fact that the raw datais passed to the execute method means that the Execute
method itself does not need to “unpack” a data object before performing the
operations, alowing rapid and simple operation execution. For example, if the
operation expects data of the iTools data type | DLARRAY2D, the iTool system will
include the selected two-dimensional array as the Data argument.

The actual processing performed by the Execute method depends entirely on the
operation.

Example Execute Method

The following example code shows a simple Execute method for the

Exanpl eDat aOp operation, which will invert the values of the supplied data. Since
our ExampleDataOp operation works on image data, this means the operation hasthe
effect of producing the negative image.

FUNCTI ON Exanpl eDat aQp: : Execut e, data

If byte data then offsets are 0 and 255, otherw se
use data m ni mum and nmaxi mum

of fsetMax = (Sl ZE(data, /TYPE) eq 1) ? 255b : MAX(data)
offsetMn = (Sl ZE(data, /TYPE) eq 1) ? Ob : M N(data)
data = of fset Max - TEMPORARY(data) + offsetMn
RETURN, 1
END
Discussion

When our Exanpl eDat aQp operation isinvoked by a user, the iTool system
automatically checksto see which items are selected in the visualization window. For
each selection, the i Tool system extracts any data of type IDLIMAGE and passes that
data to the Execute method as an IDL array. Our Execute method then finds the
minum and maximum values, and inverts the data values.

iTool Developer’s Guide Creating a New Data-Centric Operation

132 Chapter 7: Creating an Operation

Creating a DoExecuteUl Method

Suppose we want to collect some information from the user before executing our
operation. If the operation class sets the SHOW_EXECUTION_UI property, the
iTool system will call the DoExecuteUl method before calling the Execute method.
The DoExecuteUl method is responsible for displaying a user interface that collects
the appropriate information and storing that information in properties of the operation

object.

Note
iTools provided with IDL that need to collect user input in this manner use the

Ul service mechanism, described in Chapter 10, “iTool User Interface
Architecture”. Whileit is possible for the DoExecuteUl method to perform all the
necessary functions directly, using a Ul serviceis the preferred method.

Example DoExecuteUIl Method

The following example code shows a simple DoExecuteUl method for the
Exanpl eDat aOp operation. This method relies on a Ul service named
' Exanpl eDat aQp' being registered with the current i Tool.

FUNCTI ON Exanpl eDat aOp: : DoExecut eUl

oTool = self -> GetTool ()
| F (oTool EQ OBJ_NEW)) THEN RETURN, 0

RETURN, oTool -> DoUl Service(' Exanpl eDataQp', self)

END
Discussion

If the SHOW_EXECUTION_UI property is set on our ExampleDataOp operation
object, the DoExecuteUl method is called automatically when the user invokes the
operation. This method does the following:

1. Retrieve areference to the current iTool object using the GetTool method of
the IDLitIMessaging class. (IDLitIMessaging is a superclass of
IDLitOperation, and thus of IDLitDataOperation.)

2. If theretrieved iTool object referenceisanull object reference, no data about
the current tool is available, so we return immediately without calling the Ul
service.

Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 133

3. Call the ExampleDataOp Ul service. Since our ExampleDataOp operation has
only one property of its own (ByteTop), the ExampleDataOp Ul presumably
allows the user to set this value. See Chapter 12, “ Creating a User Interface
Service” for discussion of Ul services.

Creating a GetProperty Method

The operation class GetProperty method retrieves property values from the operation
object instance or from instance data of other associated objects. It should retrieve the
requested property value, either from the operation object’s instance data or by
calling another class' GetProperty method.

Note
Any property registered with a call to the RegisterProperty method must be listed as
a keyword to the GetProperty method either of the operation class or one of its
superclasses.

See “IDLitDataOperation::GetProperty” in the IDL Reference Guide manual for
additional details.

Example GetProperty Method
The following example code shows a very simple GetProperty method for the
Exanpl eDat aOp operation:

PRO Exanpl eDat aQp: : Get Property, $
BYTETOP = byteTop, _REF EXTRA = _extra

| F ARG_PRESENT(byt eTop) THEN BEG N
byteTop = self._byteTop
ENDI F

; get superclass properties
I F (N_ELEMENTS(_extra) GI 0) THEN $
self -> | DLitDataCperation:: CGetProperty, _EXTRA = _extra

END
Discussion

The GetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the operation type. The keyword inheritance
mechanism allows properties to be retrieved from the Exanpl eDat aQp class
superclasses without knowing the names of the properties.

iTool Developer’s Guide Creating a New Data-Centric Operation

134 Chapter 7: Creating an Operation

Using the ARG_PRESENT function, we check for the presence of keywordsin the
call to the GetProperty method. If a keyword is detected, we retrieve the value of the
associated property. In this example, only one property (ByteTop) is specific to the
Exanpl eDat aOp object. Weretrieve the value of the ByteTop property directly from
the Exanpl eDat aOp object’s instance data.

Finally, we call the superclass’ GetProperty method, passing in all of the keywords
stored inthe EXTRA structure.

Creating a SetProperty Method

The operation class SetProperty method stores property valuesin the operation
object’sinstance data or in properties of associated objects. It should set the specified
property value, either by storing the value directly in the operation object’s instance
data or by calling another class' SetProperty method.

Note
Any property registered with acall to the RegisterProperty method must be listed as
akeyword to the SetProperty method either of the operation class or one of its
superclasses.

See“|IDLitDataOperation::SetProperty” in the IDL Reference Guide manual for
additional details.

Example SetProperty Method

The following example code shows a very simple SetProperty method for the
Exanpl eDat aOp operation:

PRO Exanpl eDat aQp: : Set Property, BYTETOP = byteTop, $
_REF_EXTRA = _extra

I'f (N_ELEMENTS(byteTop) GT 0) THEN BEG N

sel f._byteTop = byteTop
ENDI F

I F (N_ELEMENTS(_extra) GI 0) THEN $
self -> | DLitDataCperation::SetProperty, _EXTRA = _extra

END
Discussion

The SetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the operation. The keyword inheritance mechanism

Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 135

allows properties to be set on the Exanpl eDat aQp class superclasses without
knowing the names of the properties.

Using the N_ELEMENTS function, we check to see whether a value was specified
for each keyword. If avalueis detected, we set the value of the associated property. In
this example, only one property (ByteTop) is specific to the Exanpl eDat aQp object.
We set the value of the ExampleProperty directly in the Exanpl eDat aOp object’s
instance data.

Finally, we call the superclass' SetProperty method, passing in al of the keywords
stored inthe EXTRA structure.

Creating an UndoExecute Method

The operation class' UndoExecute method is called when the user undoes an
invocation of the operation and the REVERSIBLE_OPERATION property is set on
the operation object. (See “ Operations and the Undo/Redo System” on page 123 for
details on how undo and redo are handled in different situations.) The UndoExecute
method must reverse the effect of the Execute method.

The actual processing performed by the UndoExecute method depends entirely on the
operation.

Example UndoExecute Method

The following example code shows a simple UndoExecute method for the
Exanpl eDat aOp operation, which reverses the operation of the Execute method.

FUNCTI ON Exanpl eDat aOp: : UndoExecut e, data

If byte data then offsets are 0 and 255, otherw se
use data m ni mum and maxi num
of fsetMax = (Sl ZE(data, /TYPE) eq 1) ? 255b : MAX(data)
offsetMn = (Sl ZE(data, /TYPE) eq 1) ? Ob : M N(dat a)
data = of fset Max - TEMPORARY(data) + offsetMn
RETURN, 1

END
Discussion

When the user undoes an invocation of our ExampleDataOp operation, the iTool
system supplies the data that were computed by the Execute method when the
operation was invoked. Our UndoExecute method then reverses the original
operation.

iTool Developer’s Guide Creating a New Data-Centric Operation

136 Chapter 7: Creating an Operation

Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
data types of those fields. The object class structure must be defined before any
objects of the type are created. In practice, when the IDL OBJ NEW function
attempts to create an instance of a specified object class, it executes a procedure
named Obj ect C ass__def i ne (where ObjectClassis the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle’ in Chapter 22 of the Building IDL Applications manual.

Subclassing from the IDLitDataOperation Class

The IDLitDataOperation class simplifies the creation of operations that act only on
data (as opposed to acting on the visual representation of that data) by providing
methods that automate much of the process of execution and storing undo/redo data.
If your operation class modifies data, you will ailmost certainly subclass from
IDLitDataOperation, or from another operation that subclasses from
IDLitDataOperation. See “IDLitDataOperation” in the IDL Reference Guide manual
for details on the methods and properties available to classes that subclass from
IDLitDataOperation.

Example Class Structure Definition

The following is the class structure definition for the Exanpl eDat aOp operation
class. This procedure should be the last procedure in afile named
exanpl edat aop__defi ne. pro.

PRO Exanpl eDat aOp__Defi ne

struct = { Exanpl eDat aOp, $
I NHERI TS | DLi t Dat aCperation, $
_byteTop: 0B $
}
END
Discussion

The purpose of the structure definition routine isto define anamed IDL structure
with structure fields that will contain the operation object instance data. The structure
name should be the same as the operation’s class name — in this case,

Exanpl eDat aOp.

Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 137

Like many iTool operationsthat act on data, Exanpl eDat aQp is created as asubclass
of the IDLitDataOperation class. Operation classes that subclass from
IDLitDataOperation class inherit methods and properties that make it easy to perform
operations that affect datain aniTool.

The ExampleDataOp Operation class instance data includes a single property; a byte
valuethat is stored inthe byt eTop class structure field.

Note
This example isintended to demonstrate how simple it can be to create a new

operation class definition. While the class definition for an operation class with
significant extrafunctionality will likely define additional structure fields, and may
inherit from other iTool classes, the basic principles are the same.

iTool Developer’s Guide Creating a New Data-Centric Operation

138 Chapter 7: Creating an Operation

Creating a New Generalized Operation

Generalized operations are iTool operationsthat are not limited to acting on data that
underlies a visualization. Generalized operations are based on the IDLitOperation
class. The class definition file for an IDLitOperation object must (at the least) provide
methods to initialize the operation class, get and set property values, execute the
operation, undo and redo the operation, and define the operation class structure.
Complex operations will likely provide additional methods.

How an IDLitOperation Works

When an IDLitOperation is requested by a user, the operation’s DoA ction method
(which must be provided by the operation class developer) is called. The DoAction
method is responsible for doing the following:

1. Retrieving the currently selected items and determining which items the
operation should be applied to.

Creating an IDLitCommandSet object to contain undo/redo information.

3. Recording the initia values of the selected objects in the IDLitCommandSet
object, if necessary.

4. Performing the actions associated with the operation.

Recording the final values of the selected objects in the IDLitCommandSet
object, if necessary.

6. Returning the IDLitCommandSet object.
Creating an IDLitOperation

The process of creating an IDLitDataOperation is outlined in the following sections:
e “Creating an Init Method” on page 139
e “Creating a Cleanup Method” on page 142
e “Creating a DoAction Method” on page 143
e “Creating a Recordlnitial Values Method” on page 146
e “Creating a RecordFinalValues Method” on page 147
e “Creating a GetProperty Method” on page 147
e “Creating a SetProperty Method” on page 148

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 139

e “Creating an UndoOperation Method” on page 149
e “Creating a RedoOperation Method” on page 150
e “Creating the Class Structure Definition” on page 151
Creating an Init Method
The operation class Init method handles any initialization required by the operation
object, and should do the following:
¢ define the Init function method
e cal the Init methods of any superclasses
« register any properties of the operation, and set property attributes as necessary
e perform other initialization steps as necessary

e returnthevalue 1if the initialization steps are successful, or 0 otherwise
Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method via IDL's keyword inheritance mechanism.

Note
Because iTool operations are invoked by the user’s interactive choice of an item
from amenu, they generally do not accept any keywords of their own.

The function signature of an Init method for an operation generaly looks something
likethis:

FUNCTI ON MyQperation::Init, _EXTRA = _extra
where MyOperation is the name of your operation class.

Use keyword inheritance (the _EXTRA keyword) to pass keyword parameters
through to any called routines as necessary. (See “Keyword Inheritance” in Chapter 4
of the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.)

iTool Developer’s Guide Creating a New Generalized Operation

140 Chapter 7: Creating an Operation

Superclass Initialization

The operation class Init method should call the Init method of any required
superclass. For example, if your operation classis based on an existing operation, you
would call that operation’s Init method:

success = self -> SoneQperationd ass::Init(_EXTRA = _extra)

where SomeOperationClass is the class definition file for the operation on which
your new operation is based. The variable success containsal if the initialization
was successful.

Note
Your operation class may have multiple superclasses. In general, each superclass
Init method should be invoked by your class’ Init method.

Error Checking

Rather than ssimply calling the superclass Init method, it is a good ideato check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method; if the returned valueis 0
(indicating failure), the current Init method also immediately returns with a value of
(0

IF (self -> SomeQperationdass::Init() EQ0) THEN RETURN, 0O

This convention isused in all operation classes included with IDL. RSI strongly
suggests that you include similar checks in your own class definition files.

Keywords to the Init Method

Properties of the operation class can be set in the Init method by specifying the
property names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitOperation class and the IDLitComponent class are
available to any operation class. See “I1DLitOperation Properties’ and
“IDLitComponent Properties’ in the IDL Reference Guide manual.

Use keyword inheritance (the _EXTRA keyword) to pass keyword parameters
through to the superclass as necessary. (See “Keyword Inheritance” in Chapter 4 of
the Building IDL Applications manual for details on IDL’'s keyword inheritance
mechanism.)

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 141

Standard Base Class

While you can create your new operation class from any existing operation class, in
many cases, operations that do not act directly on the data that underlies a
visualization will be subclassed directly from the base class I DLitOperation:

IF (self -> IDLitQperation::Init(_EXTRA = _extra) EQO0) $

THEN RETURN, 0

The IDLitOperation class provides the base iTool functionality used in al operation
classes created by RSI. See “Subclassing from the IDLitOperation Class’ on
page 152 for details.

Return Value

If al of the routines and methods used in the Init method execute successfully, it
should indicate successful initialization by returning 1. Other operation classes that
subclass from your operation class may check this return value, as your routine
should check the value returned by any superclass Init methods called.

Registering Properties

Operations can register properties with theiTool; registered properties show up in the
property sheet interface, and can be modified interactively by users. The iTool
property interface is described in detail in Chapter 4, “Property Management”.

Register a property by calling the RegisterProperty method of the IDLitComponent
class:

self -> RegisterProperty, Propertyldentifier [, TypeCode] $
[, ATTRI BUTE = val ue]

where Propertyldentifier isastring that uniquely identifies the property, TypeCodeis
an integer between 0 and 9 specifying the property datatype, and ATTRIBUTE isa
property attribute. See “ Registering Properties’ on page 54 for details.

Setting Property Attributes

If aproperty has already been registered, perhaps by a superclass of your operation
class, you can change the registered attribute values using the SetPropertyAttribute
method of the IDLitComponent class:

self -> SetPropertyAttribute, ldentifier

where |dentifier is the name of the keyword to the GetProperty and SetProperty
methods used to retrieve or change the value of this property. (The Identifier is
specified in the call to RegisterProperty either via the PropertyName argument or the
IDENTIFIER keyword.) See “Property Attributes’ on page 58 for additional details.

iTool Developer’s Guide Creating a New Generalized Operation

142 Chapter 7: Creating an Operation

Example Init Method

Thefollowing example code shows avery simple Init method for an operation named
Exanpl eQp. Thisfunction would be included (along with the class structure
definition routine and any other methods defined by the class) in afile named
exanpl eop__define. pro.

FUNCTI ON Exampl eQp: : I nit, _EXTRA = _extra

; Initialize the superclass.

IF (self -> IDLitOperation::Init(TYPES=['I|DLARRAY2D], $
NAVE=' Exanpl e Operation', | CON='generic_op', $
_EXTRA = _extra) NE 1) THEN $

RETURN, O

; Return success
RETURN, 1

END
Discussion

The Exanpl eOp classis based on the IDLitOperation class (discussed in
“Subclassing from the IDLitOperation Class’ on page 152). As aresult, al of the
standard features of an iTool operation are already present. We don't define any
keyword values to be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword values through to methods called
within the Init method. The Exanpl eQp Init method does the following things:

1. Cdlsthe Init method of the superclass, IDLitOperation. We use the TY PES
keyword to specify that our operation works on data that has the iTool data
type' | DLARRAY2D , provide a Name for the object instance, and provide an
icon. Finally, we use the EXTRA keyword inheritance mechanism to pass
through any keywords provided when the Exanpl eQp Init method is called.

2. Returnstheinteger 1, indicating successful initialization.
Creating a Cleanup Method

The operation class Cleanup method handles any cleanup required by the operation
object, and should do the following:
e destroy any pointers or objects created by the operation

e cal the superclass Cleanup method

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 143

Calling the superclass’ cleanup method will destroy any objects created when the
superclass was initialized.

Note
If your operation classis based on the IDLitOperation class, and does not create any
pointers or objects of its own, the Cleanup method is not strictly required. It is
always safest, however, to create a Cleanup method that calls the superclass
Cleanup method.

See“IDLitOperation::Cleanup” in the IDL Reference Guide manual for additional
details.

Example Cleanup Method

The following example code shows a very simple Cleanup method for the
Exanpl eQp operation:

PRO Exanpl eOp: : T eanup

;; O eanup supercl ass
self -> | DLit Dat aOperation:: Cl eanup

END
Discussion

Since our operation does not have any instance data of its own, the Cleanup method
simply calls the superclass Cleanup method.

Creating a DoAction Method

The operation class DoAction method is called by the iTool system when an
operation is requested by the user. (Note that data-centric operations do not need to
implement the DoA ction method because it isimplemented by the
IDLitDataOperation classitself.) The DoAction method is responsible for the
following:

¢ determining which objects the operation should be applied to (generaly, but
not always, the objects that are selected when the operation is invoked)

« retrieving the data from the selected objects
e creating an IDLitCommandSet object that will contain undo/redo data

* saving the state of the selected objects before the actions associated with the
operation are performed in the command set object

iTool Developer’s Guide Creating a New Generalized Operation

144

Note

Chapter 7: Creating an Operation

performing the requested actions on the selected objects

saving the state of the selected objects after the actions associated with the
operation are performed in the command set object

returning the command set object

If your operation changes the values of its own registered properties (as the result of
user interaction with adialog or other interface element called by DoUl Service, for
example), be sure to call the Recordinitia Values and RecordFinal Values methods.
This ensures that changes made through the dialog are placed in the undo-redo
transaction buffer.

Example DoAction Method

The following example code shows a simple DoA ction method for the Exanpl eQp
operation. This operation retrieves the STY LE property of any selected
IDLitVisSurface objects and incrementsits value by 1. Repeated invocations of this
operation would cause the selected surfaces to loop through the seven available
surface styles.

FUNCTI ON Exanpl eQp: : DoActi on, oTool

Make sure we have a valid i Tool object.
IF ~ OBJ_VALID(oTool) THEN RETURN, OBJ_NEW)

Get the selected objects
oTargets = oTool -> GetSelectedltens()

Select only IDLitVisSurface objects. If there are
no surface objects selected, return a null object.
surfaces = OBJ_NEW)
FOR i = 0, N_ELEMENTS(oTargets)-1 DO BEG N
I F (OBJ_I SA(oTargets[i], '"IDLitVisSurface')) THEN BEG N
surfaces = OBJ_VALID(surfaces) ? $
[surfaces, oTargets[i]] : oTargets[i]
ENDI F
ENDFOR

| F (~OBJ_VALI D(surfaces)) THEN RETURN, OBJ_NEW)

Create a command set:
oCndSet = self -> |DLitOperation::DoAction(oTool)

Record the initial val ues
IF (~ self -> Recordlnitial Val ues(oCndSet, surfaces, '')) THEN $

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 145

BEG N
OBJ_DESTROY, oCmdSet
RETURN, OBJ_NEW)
ENDI F

Increment the style index for each surface
FOR i = 0, N_ELEMENTS(surfaces)-1 DO BEG N
Retrieve the current surface style and increment it
surfaces[i] -> GetProperty, STYLE = styl el ndex
| F stylelndex eq 6 THEN BEG N
stylelndex =0
ENDI F ELSE BEQ N
stylelndex += 1
ENDEL SE

Set the new surface style
oTargets[i] -> SetProperty, STYLE = styl el ndex
ENDFOR

oTool - >Ref reshCur r ent W ndow

Record the final val ues
result = self -> RecordFi nal Val ues(oCmiSet, surfaces, '")

RETURN, oCndSet

END
Discussion
The ExampleOp operation DoAction method does the following things:
1. Checksthe validity of the iTool object passed to the DoAction method.
Retrievesthe list of selected objects from the iTool object.
Filters out any selected objects that are not IDLitVisSurface objects.
Calls the superclass DoAction method to create an IDLitCommandSet object.

Calls the Recordlnitia VValues method to record the relevant values in the
command set object before the operation is performed.

6. Loopsthrough thelist of IDLitVisSurface objects and incrementsthe STYLE
property of each by 1.

7. Cdlsthe RecordFina Values method to record the relevant values in the
command set object after the operation has been performed.

o & WD

8. Returnsthe command set object.

iTool Developer’s Guide Creating a New Generalized Operation

146 Chapter 7: Creating an Operation

Creating a RecordInitialValues Method

The operation class RecordInitial Values method is responsible for recording the
appropriate “before” values from the specified objectsin the provided
IDLitCommandSet object. The values recorded depend entirely on the operation
being performed.

Example RecordInitialValues Method

The following example code shows a simple Recordlnitial Values method for the
Exanpl eQp operation. An IDLitCommand object is created for each of the target
objects, and the value of the STY LE property of each object isrecorded asan Itemin
the command object.

FUNCTI ON Exanpl eQp: : Recordl ni ti al Val ues, oCndSet, oTargets, idProp

Loop through the target objects and record the value of the
STYLE property.
FOR i = 0, N_ELEMENTS(oTargets)-1 DO BEG N
; Create a command object to store the val ues.
oCrmd = OBJ_NEW' I DLi t Command', $
TARGET_| DENTI FI ER = oTargets[i] -> GetFullldentifier())
; Get the value of the STYLE property
oTargets[i] -> GetProperty, STYLE = styl el ndex
; Add the value to the command obj ect
void = oOmd -> Addlten(' OLD_STYLE , styl el ndex)
; Add the command object to the conmand set
oCmdSet -> Add, oCmd
ENDFOR

RETURN, 1

END
Discussion

The ExampleOp operation Recordlnitial Values method simply loops through the
supplied list of target objects, creating a new |DLitCommand object for each. We set
the TARGET _IDENTIFIER property for each command object. Next, weretrieve the
value of the STY LE property for each target object and add it to the command object
as an Item. Finally, we add each command object to the supplied IDLitCommandSet
object.

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 147

Creating a RecordFinalValues Method

The operation class RecordFinal Values method is responsible for recording the
appropriate “ after” values from the specified objectsin the provided
IDLitCommandSet object. The values recorded depend entirely on the operation
being performed.

Example RecordFinalValues Method

The following example code shows a simple RecordFinal Values method for the
Exanpl eOp operation. The new value of the STY LE property of each target object is
recorded in the appropriate IDLitCommand object retrieved from the command set.

FUNCTI ON Exanpl eQp: : Recor dFi nal Val ues, oCndSet, oTargets, idProp

Loop through the target objects and record the value of the
STYLE property.
FOR i = 0, N ELEVMENTS(oTargets)-1 DO BEG N
Retrei ve the appropriate conmmand object fromthe
comrand set.
oCnd = oCndSet -> Get (POSITION = i)
Get the value of the STYLE property
oTargets[i] -> GetProperty, STYLE = styl el ndex
; Add the value to the command obj ect
void = oOmd -> Addlten(' NEWSTYLE , styl el ndex)
; Add the command object to the conmand set
oCmdSet -> Add, oCmd
ENDFOR

RETURN, 1
END
Discussion

The ExampleOp operation RecordFina Values method simply loops through the
supplied list of target objects, recording the new value for the STY LE property in the
IDLitCommand object associated with each target.

Creating a GetProperty Method

The operation class GetProperty method retrieves property values from the operation
object instance or from instance data of other associated objects. It should retrieve the
requested property value, either from the operation object’s instance data or by
calling another class' GetProperty method.

iTool Developer’s Guide Creating a New Generalized Operation

148 Chapter 7: Creating an Operation

Note
Any property registered with acall to the RegisterProperty method must be listed as
akeyword to the GetProperty method either of the operation class or one of its
superclasses.

See “IDLitOperation::GetProperty” in the IDL Reference Guide manual for
additional details.

Example GetProperty Method

The following example code shows a very simple GetProperty method for the
Exanpl eOp operation:

PRO Exanpl eOp: : Get Property, _REF_EXTRA = _extra

; get superclass properties
IF (N_ELEMENTS(_extra) GI 0) THEN $
self -> | DLitOperation:: GetProperty, _EXTRA = _extra

END
Discussion

The GetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the operation type. The keyword inheritance
mechanism allows propertiesto be retrieved from the Exanpl eOp class superclasses
without knowing the names of the properties.

In this example, there are no properties specific to the Exanpl eQp object, so we
simply call the superclass’ GetProperty method, passing in al of the keywords stored
inthe EXTRA structure.

Creating a SetProperty Method

The operation class SetProperty method stores property values in the operation
object’sinstance dataor in properties of associated objects. It should set the specified
property value, either by storing the value directly in the operation object’s instance
data or by calling another class’ SetProperty method.

Note
Any property registered with a call to the RegisterProperty method must be listed as
a keyword to the SetProperty method either of the operation class or one of its
superclasses.

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 149

See“IDLitOperation::SetProperty” in the IDL Reference Guide manual for additional
details.

Example SetProperty Method

The following example code shows a very simple SetProperty method for the
Exanpl eOp operation:

PRO Exanpl eOp: : Set Property, _EXTRA = _extra

| F (N_ELEMENTS(extra) GT 0) THEN $
self -> IDLitOperation::SetProperty, _EXTRA = _extra

END
Discussion

The SetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the operation. The keyword inheritance mechanism
allows properties to be set on the Exanpl eOp class' superclasses without knowing
the names of the properties.

In this example, there are no properties specific to the Exanpl eOp object, so we
simply use the N_ELEMENTS function to check whether the _EXTRA structure
contains any elements. If it does, we call the superclass’ SetProperty method, passing
in all of the keywords stored in the _EXTRA structure.

Creating an UndoOperation Method

The operation class UndoOperation method is called when the user undoes the
operation by selecting “Undo” from amenu or toolbar.

Example UndoOperation Method

The following example code shows a very simple UndoOperation method for the
Exanpl eQp operation:

FUNCTI ON Exanpl eQp: : UndoQper ati on, oCommandSet
Retrieve the |DLitComand objects stored in the
; conmand set object.
oCnds = oCommandSet -> Cet (/ALL, COUNT = nCbj s)

; Get a reference to the iTool object.
oTool = self -> GetTool ()

Loop through the IDLitComuand objects and restore the

iTool Developer’s Guide Creating a New Generalized Operation

150 Chapter 7: Creating an Operation

origi nal val ues.
FORi =0, nObjs-1 DO BEG N
oCmds[i] -> CGetProperty, TARGET_I DENTIFI ER = idTar get
oTarget = oTool -> GetByldentifier(idTarget)
; CGet the old val ue
IF (oQmds[i] -> CGetltenm(' OLD _STYLE', stylelndex) EQ 1) THEN $
oTarget -> SetProperty, STYLE = styl el ndex
ENDFOR

END
Discussion
The UndoOperation method does the following things:

1. Retrievesan array of IDLitCommand objects from the supplied
IDLitCommandSet object

Gets areference to theiTool object.

3. For each command object, retrieve the identifier string for the target object.
Use the identifier string to retrieve areference to the target object itself.

4. Retrievethe OLD_STYLE item from the command object and use its value to
set the STY LE property on the target object.

Note
The UndoOperation method could also have been implemented without the use of

the values stored in the command set object simply by decrementing the value of the
STYLE property for each target.

Creating a RedoOperation Method

The operation class RedoOperation method is called when the user redoes the
operation by selecting “Redo” from a menu or toolbar.

Example RedoOperation Method

The following example code shows a very simple RedoOperation method for the
Exanpl eOp operation:
FUNCTI ON Exanpl eQp: : RedoQper ati on, oConmmandSet
Retrieve the |DLitComuand objects stored in the
command set object.
oCnds = oCommandSet -> Get (/ALL, COUNT = nCbjs)

Get a reference to the i Tool object.

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 151

oTool = self -> GetTool ()

Loop through the IDLitComuand objects and restore the
new val ues.
FORi = 0, n(bjs-1 DO BEG N
oCmds[i] -> GetProperty, TARGET_I| DENTIFIER = idTarget
oTarget = oTool -> CGetByldentifier(idTarget)
;. CGet the new val ue
IF (oQOmds[i] -> Getlten(' NEWSTYLE , stylelndex) EQ 1) THEN $
oTarget -> SetProperty, STYLE = styl el ndex
ENDFOR
END

Discussion
The RedoOperation method does the following things:

1. Retrievesan array of IDLitCommand objects from the supplied
IDLitCommandSet object

Gets areference to theiTool object.

For each command object, retrieve the identifier string for the target object.
Use the identifier string to retrieve areference to the target object itself.

4. Retrievethe NEW_STYLE Item from the command object and useitsvalueto
set the STY LE property on the target object.

Note
The RedoOperation method could also have been implemented without the use of
the values stored in the command set object simply by incrementing the value of the
STYLE property for each target.

Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
data types of those fields. The object class structure must have been defined before
any objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure
named Cbj ect Cl ass__def i ne (where ObjectClass is the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle” in Chapter 22 of the Building IDL Applications manual.

iTool Developer’s Guide Creating a New Generalized Operation

152 Chapter 7: Creating an Operation

Subclassing from the IDLitOperation Class

The|DLitOperation classisthe base classfor al iTool operations. In almost all cases,
new operationswill be subclassed either from the IDLitDataOperation class (whichis
itself asubclass of IDLitOperation) or from aclass that is a subclass of one of these
two classes.

Note
If your operation acts directly on data, rather than affecting the visual appearance of
objectsin theiTool, you may be able to subclass from IDLitDataContainer. See
“Creating a New Data-Centric Operation” on page 125 for details.

See “IDLitOperation” in the IDL Reference Guide manual for details on the methods
and properties available to classes that subclass from IDLitOperation.

Example Class Structure Definition

The following isthe class structure definition for the Exanpl eOp operation class.
This procedure should be the last procedure in afile named
exanpl eop__define. pro.

PRO Exanpl eOp__Defi ne
struct = { ExanpleQp, INHERI TS | DLit Qperation}

END
Discussion

The purpose of the structure definition routine isto define anamed IDL structure
with structure fields that will contain the operation object instance data. The structure
name should be the same as the operation’s class name — in this case, Exanpl eOp.

Like many iTool operations that act on data, Exanpl eQp is created as a subclass of
the IDLitOperation class. The ExampleOp Operation class does not include any
instance data of its own.

Note
This example isintended to demonstrate how simple it can be to create a new
operation class definition. While the class definition for an operation class with
significant extra functionality will likely define additional structure fields, and may
inherit from other iTool classes, the basic principles are the same.

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 153

Registering an Operation

Before an operation can be performed by an iTool, the operation’s class definition
must be registered as being available to the iTool. Registering an operation with the
iTool links the class definition file that contains the actual IDL code that defines the
operation with asimple string that names the type. Code that performs an operationin
an iTool uses the name string to specify which operation should be performed.

Using IDLitTool::RegisterOperation

In most cases, you will register an operation with theiTool in theiTool’s class Init
method. Registration ensures that the operation is available to theiTool. (See
“Creating aNew iTool Class’ on page 69 for details on the iTool class Init method.)

To register an operation, call the IDLitTool::RegisterOperation method:
self -> RegisterOperation, OperationNane, Operation_C ass_Nane

where OperationName is the string you will use when referring to the operation, and
Operation_Class Nameis a string that specifies the name of the classfile that
contains the operation’s definition.

Note
ThefileOperati on_Cl ass_Nane__defi ne. pr o must exist somewherein IDL's
path for the visualization type to be successfully registered.

See“IDLitTool::RegisterOperation” in the IDL Reference Guide manual for details.
Specifying Useful Properties

You can set any property of the IDLitOperation and IDLitComponent classes when

registering an operation. The following properties may be of particular interest:

EXPENSIVE_OPERATION

A boolean value that indicates whether the operation is expensive. Expensive
operations are those that require significant memory or processing time to execute.
Individual operations should use the value of this property to determine whether the
results of the operation should be cached to avoid re-execution when undoing or
redoing.

iTool Developer’s Guide Registering an Operation

154 Chapter 7: Creating an Operation

ICON

A string value giving the name of anicon to be associated with this object. Typically,
this property is the name of a bitmap file to be used when displaying the object in a
tree view. See“lcon Bitmaps’ on page 28 for details on where bitmap icon files are
located.

IDENTIFIER

Astring that will be used as the identifier of the object. Identifier strings specify
where within an iTool’s object hierarchy an object islocated; this, in turn, may affect
whether and where the object isrevealed in theiTool’s graphical user interface. For
example, to display a menu item for an operation named' MyQper ati on' inthe
iTool Operations menu, you would specify the identifier string

' oper ati ons/ MyOper at i on' . See“iTool Object Identifiers’ in Chapter 2 of the
iTool Developer’s Guide manual for details about how identifiers are named.

If this property is not specified, then the value of the OperationName argument is
used as the identifier.

REVERSIBLE_OPERATION

A boolean value that indicates whether the operation isreversible. When an operation
isreversible, it can be undone by applying an operation rather than restoring a stored
value. Rotation by a specified angle is an example of an operation that is reversible,
since applying another rotation by the same angle in the opposite direction returns the
visualization to its original state. Individual operations should use the value of this
property to determine how the operation should be undone.

SHOW_EXECUTION_UI

A boolean value that indicates whether the operation should display a user interface
element such as a dialog when the operation is executed.

TYPES

A string or an array of strings indicating the types of datato which the operation can
be applied. iTools data types are described in Chapter 3, “ Data Management”. Set this
property to anull string (' ') to specify that the operation can be applied to all types

of data.

Registering an Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 155

Unregistering an Operation

If you are creating anew iTool from an existing iTool class, you may want to remove
an operation registered for the existing class from your new tool. This can be useful if
you have an iTool class that implements all of the functionality you need, but which
registers an operation you don’t want included in your iTool. Rather than recreating
theiTool classto remove the operation, you could create your new iTool classin such
away that it inherits from the existing iTool class, but unregisters the unwanted
operation.

Unregister an operation by calling the IDLitTool::UnregisterOperation method in the
Init method of your iTool class:

self -> UnregisterQperation, identifier

where identifier isthe string value of the IDENTIFIER property specified when
registering the operation.

For example, suppose you are creating a new iTool that subclasses from the standard
iSurface tool, which is defined by the IDLitTool Surface class. If you wanted your
new tool to behave just like the iSurface tool, with the exception that it would not
handl e the resample operation, you could include the following method call in your
iTool’s Init method:

self -> UnregisterQperation, 'Qperations/Transform Resanpl e’
Finding the Identifier String

To find the string value used as the identifier parameter to the UnregisterOperation
method, you must inspect the class file that registers the operation. In the case of our
example, you would inspect thefilei dl i tt ool surface__defi ne. protofindthe
following call to the RegisterOperation method:

self -> RegisterQperation, 'Resanple', 'I|IDLitopResanple', $

| DENTI FI ER = ' Qperations/ Transf orm Resanple', $
DATA TYPE = "array2', |ICON = 'sum

The value of the IDENTIFIER keyword to the RegisterOperation method
(" Oper ati ons/ Tr ansf or m Resanpl e') isthe string value of the operation’s
IDENTIFIER property.

iTool Developer’s Guide Unregistering an Operation

156 Chapter 7: Creating an Operation

Example: Data Resample Operation

This example creates a data operation to resample datain a dataset using the IDL
CONGRID function. The data resample operation isincluded in thefile
idlitopresanple__define. pro,located inthelDL distribution in the

l'i b/itool s/ conponents subdirectory of the main IDL directory.

Class Definition File

The class definition for i dl i t opr esanpl e consists of an Init method, an Execute
method, GetProperty and SetProperty methods, and a class structure definition
routine. Aswith all object class definition files, the class structure definition routine
isthelast routinein thefile, and thefile is given the same name as the class definition
routine (with the suffix . pr o appended).

Init Method
FUNCTI ON | DLi t opResanpl e::Init, _EXTRA = _extra
IF (~ self -> IDLitDataOperation::|nit(NAVE=' Resanple', $
TYPES=[' | DLVECTOR , ' | DLARRAY2D ,' | DLARRAY3D], $
DESCRI PTI ON=" Resanpl i ng", _EXTRA = _extra)) THEN $
RETURN, O

; Default values for resanpling factors.

self. x =2
self. y =2
self. z =2

; Register properties
self -> RegisterProperty, 'X , /FLOAT, $
DESCRI PTI ON=' X resanpling factor.'

self -> RegisterProperty, 'Y, /FLOAT, $
DESCRI PTI ON=' Y resanpling factor.'

self -> RegisterProperty, 'Z', /FLOAT, $
DESCRI PTI ON=' Z resanpling factor.'

self -> RegisterProperty, 'METHOD , $
ENUMLI ST=[' Near est nei ghbor', 'Linear', 'Cubic'], $
NAME=' | nt er pol ati on nethod', $
DESCRI PTI ON=' I nt er pol ati on net hod. '

| F (N_ELEMENTS(_extra) GI 0) THEN $

Example: Data Resample Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 157

self -> | DLitopResanpl e:: Set Property, _EXTRA = _extra
RETURN, 1

END
Discussion

Thefirstitemin our class definition fileisthe Init method. The Init method’s function
signature is defined first, using the class name IDLitOpResample. The _EXTRA
keyword inheritance mechanism allows any keywords specified in acal to the Init
method to be passed through to routines that are called within the Init method even if
we do not know the names of those keywords in advance.

Next, we call the Init method of the superclass. In this case, we are creating asubclass
of the IDLitDataOperation class; this provides us with all of the standard i Tool data
operation functionality automatically. We specify three iTool datatypes on which our
operation will work: “IDLVECTOR”, “IDLARRAY 2D”, and “IDLARRAY 3D". Any
“extra’ keywords specified in the call to our Init method are passed to the
IDLitDataOperation::Init method via the keyword inheritance mechanism. If the call
to the superclass Init method fails, we return immediately with avalue of O.

Next we store the default values for the three resampling factors (one each for the X,
Y, and Z dimensions) in the abject instance datafields _x, _y, and _z. We register
each of these values as a property of the operation. We also register the METHOD
property, assigning to it an enumerated list with three strings describing three
different interpolation methods (“Nearest Neighbor”, “Linear”, and “ Cubic”).

If any “extra’ keywordswere specified in the call to our Init method, we pass them to
the SetProperty method our IDLitOpResample object.

Finally, we return the value 1 to indicate successful initialization.
Execute Method
FUNCTI ON | DLi t opResanpl e: : Execut e, data

dims = Sl ZE(data, /DI MENSI ONS)

CASE N_ELEMENTS(di ms) OF
1. newdins = dins*ABS([self. _x]) > [1]
2: newdinms = dins*ABS([self._x, self._y]) >[1, 1]
3: newdins = di ms*ABS([sel f._x, self._y, self._z]) >[1, 1, 1]
ELSE: RETURN, O

ENDCASE

No change in size.

iTool Developer’s Guide Example: Data Resample Operation

158

Chapter 7: Creating an Operation

| F (ARRAY_EQUAL(newdi ms, dims)) THEN RETURN, 1

interp = 0 &cubic =0
CASE (sel f._nethod) OF

0: ;; do nothing

1: interp =1

2: cubic =1
ENDCASE

CASE N_ELEMENTS(di ms) OF

1: data = CONGRI D(dat a,

| NTERP = interp,

2: data = CONGRI D(dat a,

I NTERP = interp,
CONGRI D al ways uses

newdi ns[0], $
CUBI C = cubic)

newdi ns[0], newdinms[1], $
CUBI C = cubi c)
linear interp with 3D

Example: Data Resample Operation

3: data = CONGRI D(data, newdi ns[0], newdi ns[1], newdi ns[2])
ENDCASE

RETURN, 1

END
Discussion

The Execute method does the work of our operation. Since IDLitOpResampleis
based on the IDLitDataOperation class, when the operation is requested by a user the
Execute method is automatically called with each of the currently selected data
objects as the data argument.

First, we use the SIZE function to determine the number of dimensions of the input
dataitem. We use a CA SE statement to create a new array (newdi ns) that stores the
number of elements of each dimension multiplied by the scale factor for each
dimension. The number of elementsin each dimension cannot be less than one.

Next we use the ARRAY _EQUAL function to compare the number of elements of
each dimension of the input data with the number of elements of each dimension of
our newdi ns array. If these numbers are equal, no resampling will take place, so we
stop processing and return 1 for success.

If our newdims array contains a different number of elements than the original input

data, some resampling will take place. We check the value of the METHOD property
(stored in the instance data field _method) to determine what type of resampling we

should perform.

Finally, we call the CONGRID function with the appropriate arguments and
keywords, depending on the dimensionality of the input data and the resampling
method specified. We then return 1 for success.

iTool Developer’s Guide

Chapter 7: Creating an Operation 159

GetProperty Method

PRO | DLi t opResanpl e: : Get Property, $

X=x, $
Y=y, %
Z=12z $

METHOD = net hod, $
REF EXTRA = _extra

My properties.
| F ARG PRESENT(x) THEN $

x = self. _x

| F ARG PRESENT(y) THEN $
y = self._y

| F ARG PRESENT(z) THEN $
z =self. _z

| F ARG _PRESENT(et hod) THEN $
nmet hod = sel f._met hod

Super cl ass properti es.
I F (N_ELEMENTS(_extra) gt 0) THEN $
self -> | DLitDataCperation:: CGetProperty, _EXTRA = _extra

END
Discussion

The GetProperty method for our operation supports four properties named X, Y, Z,
and METHOD, stored in instance data fields of the same name (with an underscore
prepended). If any of these propertiesis specified in the call to the GetProperty
method, its value is retrieved from the appropriate instance data field. Any other
properties included in the method call are passed to the superclass' GetProperty
method.

SetProperty Method

PRO | DLi t opResanpl e: : Set Property, $

X=x, $

Y=y, $

Z=1z $

METHOD = et hod, $
_EXTRA = _extra

; My properties.
| F N_ELEMENTS(x) THEN $

iTool Developer’s Guide Example: Data Resample Operation

160 Chapter 7: Creating an Operation

IF (x NE 0) THEN self._x

1
x

| F N_ELEMENTS(y) THEN $
IF (y NE 0) THEN self._y

1
<

| F N_ELEMENTS(z) THEN $
IF (z NE O) THEN self._z

1
N

| F N_ELEMENTS(net hod) THEN $
sel f. _nethod = net hod

Super cl ass properti es.
IF (N_ELEMENTS(_extra) gt 0) THEN $
self -> | DLitDataOperation::SetProperty, _EXTRA = _extra

END
Discussion

The SetProperty method for our operation supports four properties named X, Y, Z,
and METHOD, stored in instance data fields of the same name (with an underscore
prepended). If any of these propertiesis specified in the call to the SetProperty
method, its valueis stored in the appropriate instance data field. Any other properties
included in the method call are passed to the superclass' SetProperty method.

Class Definition
PRO | DLi t opResanpl e__defi ne

struc = {IDLitopResanple, $
i nherits |DLitDataQperation, $

_x: 0d, $
_y: 0d, $
_z: 0d, $
_method: Ob $
}
END
Discussion

Our class definition routine is very simple. We create an IDL structure variable with
the name | DLi t OpResanpl e, specifying that the structure inherits from the
IDLitDataOperation class. The structure has three instance datafields named _x, _y,
and _z, which contain double-precision floating point values, and a single instance
datafield named _net hod which contains a byte value.

Example: Data Resample Operation iTool Developer’s Guide

Chapter 8:
Creating a File Reader

This chapter describes the process of creating an iTool file reader.

Overviewcoviiiiinnannnn. 162 RegisteringaFileReader 177
Predefined iTool FileReaders 163 UnregisteringaFileReader 178
CreatingaNew FileReader 166 Example: TIFFFileReader 179

iTool Developer’s Guide 161

162

Chapter 8: Creating a File Reader

Overview

A file reader isan iTool component object class that defines how data stored in afile
should be imported into the iTool environment. File readers have mechanisms for
determining the type of data stored in afile, which alowsthem to create IDLitData
objects from the stored data. Some file readers implement a graphical user interface
allowing the user to specify the format of data before importing into the iTool; others
read a well-defined file type and operate more or less automatically. Some examples
of iTool file readers are:

e the ASCII file reader, which usesthe IDL ASCII_TEMPLATE and
READ_ASCII functions to allow the user to define the format of datain atext
file,

» variousimage file readers, which allow the user to import data stored in JPEG,
BMP, PNG, and other well-defined image format files,

« ageneric binary file reader, which allows the user to specify the format of files
containing binary data.

A number of standard file readers are predefined and included in the IDL iTools
package; if none of the predefined file readers suits your needs, you can create your
own file reader by subclassing either from the base IDLitReader class on which al of
the predefined file readers are based, or from one of the predefined file readers.

The File Reader Creation Process

Overview

To create anew iTool file reader, you will do the following:

» Choose aniTool file reader class on which your new operation will be based.
Inamost all cases, you will base your new operation on the IDLitReader class,
which handles registration of standard file properties and provides standard
messaging features.

¢ Provide methods to check the type of data stored in the file and place the
retrieved the data in a data object.

e Set dataobject properties.

This chapter describes the process of creating a new file reader based on the
IDLitReader class.

iTool Developer’s Guide

Chapter 8: Creating a File Reader 163

Predefined iTool File Readers

TheiTool system distributed with IDL includes a number of pre-defined file readers.
You can include these file readers in an iTool directly by registering the class with
your iTool (as described in “ Registering a File Reader” on page 177). You can also
create a new file reader class based on one of the pre-defined classes.

IDLitReadASCII

The iTools ASCII file reader usesthe IDL READ_ASCII and ASCII_TEMPLATE
functionsto read datafrom an ASCII fileinto an IDL variable or variables. It presents
awizard interface that allows the user to define the structure of the datain the ASCII
file and specify which data should be included.

Registered Properties

None
IDLitReadBinary

TheiTools Binary file reader usesthe IDL READ_BINARY and
BINARY_TEMPLATE functionsto read datafrom abinary datafileinto an IDL
variable or variables. It presents awizard interface that allows the user to define the
structure of the datain the binary file and specify which data should be included.

Registered Properties

TEMPLATE — A template structure (previously defined by the
BINARY_TEMPLATE function) describing the file to be read.

IDLitReadBMP

TheiTools BMP file reader usesthe IDL READ_BMP function to read a* . brp file
and place theimage datain an iTool image data object.

Registered Properties

None
IDLitReadDICOM

TheiTools DICOM reader usesthe IDL READ_DICOM functiontoread a*. dcm
and place the image datain an iTool image data object.

iTool Developer’s Guide Predefined iTool File Readers

164 Chapter 8: Creating a File Reader

Registered Properties

None
IDLitReadISV

The iTools Saved Variables file reader restores a saved iTool state (*. i sv) file. All
data objects in the file are placed into the current iTool data manager session, and all
visualization objects are restored and displayed.

Registered Properties

None
IDLitReadJPEG

TheiTools JPEG file reader usesthe IDL READ_JPEG proceduretoreada*. j pg or
* . j peg file and place the image data in an iTool image data object.

Registered Properties

None
IDLitReadPICT

TheiTools PICT filereader usesthe IDL READ_PICT proceduretoread a*. pct or
*. pi ct fileand place the image datain an iTool image data object.

Registered Properties

None
IDLitReadPNG

TheiTools PNG file reader usesthe IDL READ_PNG functiontoread a*. png file
and place the image (and, optionally, palette) datain an iTool image data object.

Registered Properties

None
IDLitReadTIFF

TheiTools TIFF file reader usesthe IDL READ_TIF functiontoreada*.ti f or
*. tiff fileand place theimage (and, optionally, palette) datain aniTool image data
object.

Predefined iTool File Readers iTool Developer’s Guide

Chapter 8: Creating a File Reader 165

Registered Properties

IMAGE_INDEX — An integer specifying the index of the image within the TIFF file
that should be read into the image data object.

IDLitRead WAV

TheiTools WAV file reader usesthe IDL READ_WAV functiontoread a*. wav file
and place the datain an iTool vector object.

Registered Properties

None

iTool Developer’s Guide Predefined iTool File Readers

166

Chapter 8: Creating a File Reader

Creating a New File Reader

AniTool file reader class definition file must (at the least) provide methods to
initialize the file reader class, get and set property values, handle changes to the
underlying data, clean up when the file reader is destroyed, and define the file reader
class structure. Complex file reader types will likely provide additional methods.

The process of creating an file reader is outlined in the following sections:
e “Creating an Init Method” on page 166
e “Creating a Cleanup Method” on page 170
e “Creating a GetProperty Method” on page 171
e “Creating a SetProperty Method” on page 172
e “Creating an IsA Method” on page 173
e “Creating a GetData Method” on page 174
e “Creating the Class Structure Definition” on page 175

Creating an Init Method

Thefilereader class Init method handles any initialization required by the file reader
object, and should do the following:

e define the Init function method
e cal the Init methods of any superclasses

e register any properties of your file reader, and set property attributes as
necessary

e perform other initialization steps as necessary

e returnthevaue 1if theinitialization steps are successful, or 0 otherwise

Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method via IDL’'s keyword inheritance mechanism. The
function signature for an Init method for afile reader generally looks something like
this:

Creating a New File Reader iTool Developer’s Guide

Chapter 8: Creating a File Reader 167

FUNCTI ON MyReader::Init, MYKEYWORDL = nykeywordl, $
MYKEYWORD2 = nykeyword2, ..., _REF EXTRA = _extra

where MyReader isthe name of your file reader class and the MYKEYWORD
parameters are keywords handled explicitly by your Init function.

Use keyword inheritance (the _REF_EXTRA keyword) to pass keyword parameters
through to any called routines as necessary. (See “Keyword Inheritance” in Chapter 4
of the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.)

Superclass Initialization

The file reader class Init method should call the Init method of any required
superclass. For example, if your file reader is based on an existing file reader class,
you would call that class' Init method:

success = self -> SoneFil eReaderd ass::Init(_EXTRA = _extra)

where SomeFileReader Class is the class definition file for the file reader on which
your new file reader isbased. The variable success will contain al if the
initialization was successful.

Note
Your file reader class may have multiple superclasses. In general, each superclass
Init method should be invoked by your class’ Init method.

Error Checking

Rather than ssimply calling the superclass Init method, it is a good ideato check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method; if the returned valueis 0
(indicating failure), the current Init method also immediately returns with a value of
(0%

IF (self -> SomeFil eReaderd ass::Init() EQ0) THEN RETURN, O

This convention isused in all file reader classes included with IDL. RSI strongly
suggests that you include similar checks in your own class definition files.

Keywords to the Init Method

Properties of the file reader class can be set in the Init method by specifying the
property names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitReader class and the IDLitComponent class are

iTool Developer’s Guide Creating a New File Reader

168

Chapter 8: Creating a File Reader

available to any file reader class. See “IDLitReader Properties’ and
“IDLitComponent Properties’ in the IDL Reference Guide manual.

Use keyword inheritance (the _ EXTRA keyword) to pass keyword parameters
through to the superclass as necessary. (See “Keyword Inheritance” in Chapter 4 of
the Building IDL Applications manual for details on IDL’'s keyword inheritance
mechanism.)

Standard Base Class

While you can create your new file reader class from any existing file reader class, in
many cases, file reader classes you create will be subclassed directly from the base
class IDLitReader:

IF (self -> IDLitReader::Init(Extensions, EXTRA = _extra) EQO0) $
THEN RETURN, O

where Extensionsis astring or array of strings specifying the filename extensions
readable by your file reader.

Note
The value of the Extensions argument is used only to display the proper filename
filter when an Open dialog is displayed — it is not a check for the proper filetype.
The IsA method must check the file to determine whether it is readable by your file
reader.

The IDLIitReader class provides the baseiTool file reader functionality used in the
tools created by RSI. See “ Subclassing from the IDLitReader Class’ on page 175 for
details.

Return Value

If al of the routines and methods used in the Init method execute successfully, it
should indicate successful initidization by returning 1. Other file reader classes that
subclass from your file reader class may check this return value, as your routine
should check the value returned by any superclass Init methods called.

Registering Properties

File reader objects can register properties with the iTool; registered properties show
up in the property sheet interface shown in the system preferences browser (described
in “Properties of theiTools System” on page 64), and can be modified interactively
by users. TheiTool property interface is described in detail in Chapter 4, “Property
Management”.

Creating a New File Reader iTool Developer’s Guide

Chapter 8: Creating a File Reader 169

Register a property by calling the RegisterProperty method of the IDLitComponent
class:

self -> RegisterProperty, Propertyldentifier [, TypeCode] $
[, ATTRI BUTE = val ue]

where Propertyldentifier isastring that uniquely identifies the property, TypeCodeis
an integer between 0 and 9 specifying the property datatype, and ATTRIBUTE isa
property attribute. See “ Registering Properties’ on page 54 for details.

Note
A file reader need not register any properties at all, if the read operation is simple.
Many of the standard i Tool image file readers work without registering any
properties.

Setting Property Attributes

If aproperty has already been registered, perhaps by a superclass of your file reader
class, you can change the registered attribute values using the SetPropertyAttribute
method of the IDLitComponent class:

self -> SetPropertyAttribute, ldentifier

where ldentifier is the name of the keyword to the GetProperty and SetProperty
methods used to retrieve or change the value of this property. The Identifier is
specified in the call to RegisterProperty either via the PropertyName argument or the
IDENTIFIER keyword. See “Property Attributes” on page 58 for additional details.

Passing Through Caller-Supplied Property Settings

If you haveincluded the REF EXTRA keyword in your function definition, you can
use IDL’s keyword inheritance mechanism to pass any “extra’ keyword values
included in the call to the Init method through to other routines. This mechanism
allowsyou to specify property settings when the Init method is called; simply include
each property’s keyword/value pair when calling the Init method, and include the
following in the body of the Init method:

I F (N_ELEMENTS(_extra) GI 0) THEN $
self -> MyReader::SetProperty, _EXTRA = _extra

where MyReader is the name of your file reader class. Thisline has the effect of
passing any “extra’ keyword valuesto your file reader class’ SetProperty method,
where they can either be handled directly or passed through to the SetProperty
methods of the superclasses of your class. See “Creating a SetProperty Method” on
page 172 for details.

iTool Developer’s Guide Creating a New File Reader

170 Chapter 8: Creating a File Reader

Example Init Method
FUNCTI ON Exanpl eReader::1nit, _EXTRA = _extra

IF (self -> IDLitReader::Init('ppm, FILETYPE='PPM, $
DESCRI PTI ON="PPM Fi | e Reader", $
_EXTRA = _extra) EQ 0) THEN $
RETURN, O

RETURN, 1

END
Discussion

The Exanpl eReader classisbased on the IDLitReader class (discussed in
“Subclassing from the IDLitReader Class’ on page 175). Asaresult, all of the
standard features of aniTool filereader class are already present. We don’t define any
keyword values to be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword values through to methods called
within the Init method. The Exanpl eReader Init method does the following things:

1. CadlstheInit method of the superclass, IDLitReader. We specify alist of
accepted filename extensions (only ppm in this case) via the Extensions
argument, and set the FILETY PE keyword. We include a description of the
reader viathe DESCRIPTION keyword. Finally, we usethe_EXTRA keyword
inheritance mechanism to pass through any keywords provided when the
Exanpl eReader Init method is called.

2. Returnstheinteger 1, indicating successful initialization.
Creating a Cleanup Method
Thefile reader class Cleanup method handles any cleanup required by the file reader
object, and should do the following:
« destroy any pointers or objects created by the file reader
e cal the superclass Cleanup method

Calling the superclass cleanup method will destroy any objects created when the
superclass was initialized.

Note
If your file reader classis based on the IDLitReader class, and does not create any
pointers or objects of its own, the Cleanup method is not strictly required. It is

Creating a New File Reader iTool Developer’s Guide

Chapter 8: Creating a File Reader 171

always safest, however, to create a Cleanup method that calls the superclass
Cleanup method.

See“IDLitReader::Cleanup” in the IDL Reference Guide manual for additional
details.

Example Cleanup Method
PRO Exanpl eReader: : Cl eanup

;; Cleanup supercl ass
self -> | DLit Reader: : Cl eanup

END

Discussion

Since our file reader object does not have any instance data of its own, the Cleanup
method simply calls the superclass Cleanup method.

Creating a GetProperty Method

Thefile reader class GetProperty method retrieves property values from the file
reader object instance or from instance data of other associated objects. It should
retrieve the requested property value, either from the file reader object’s instance data
or by calling another class' GetProperty method.

Note
Any property registered with a call to the RegisterProperty method must belisted as
akeyword to the GetProperty method either of the visualization class or one of its
superclasses.

Note
A file reader need not register any properties at all, if the read operation is simple.
Many of the standard i Tool image file readers work without registering any
properties.

See " IDLitReader::GetProperty” in the IDL Reference Guide manual for additional
details.

iTool Developer’s Guide Creating a New File Reader

172 Chapter 8: Creating a File Reader

Example GetProperty Method
PRO Exanpl eReader:: Get Property, _REF_EXTRA = _extra

| F (N_ELEMENTS(extra) GT 0) THEN $
self -> IDLitReader:: GetProperty, _EXTRA = _extra

END
Discussion

The GetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the file reader. Since the file reader we are creating has
no properties of its own, there are no keywords explicitly defined. The keyword
inheritance mechanism allows properties to be retrieved from the Exanpl eReader
class superclasses without knowing the names of the properties.

Since our Exanpl eReader class has no properties of its own, we simply call the
superclass’ GetProperty method, passing in all of the keywords stored in the
_EXTRA structure.

Creating a SetProperty Method

The file reader SetProperty method stores property valuesin the file reader object’s
instance data. It should set the specified property value, either by storing the value
directly in the visualization object’s instance data or by calling another class
SetProperty method.

Note
Any property registered with acall to the RegisterProperty method must be listed as
akeyword to the SetProperty method either of the visualization class or one of its
superclasses.

Note
A file reader need not register any properties at al, if the read operation is simple.
Many of the standard i Tool image file readers work without registering any
properties.

See “IDLitReader::SetProperty” in the IDL Reference Guide manual for additional
details.

Creating a New File Reader iTool Developer’s Guide

Chapter 8: Creating a File Reader 173

Example SetProperty Method
PRO Exanpl eReader:: Set Property, _EXTRA = _extra

| F (N_ELEMENTS(extra) GT 0) THEN $
self -> I DLitReader:: SetProperty, _EXTRA = _extra

END
Discussion

The SetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the visualization type. Since the file reader we are
creating has no properties of its own, no keywords are explicitly defined. The
keyword inheritance mechanism allows properties to be set on the Exanpl eReader
class superclasses without knowing the names of the properties.

Using the N_ELEMENTS function, we check to see whether any properties were
specified via the keyword inheritance mechanism. If any keywords were specified,
we call the superclass SetProperty method, passing in al of the keywords stored in
the EXTRA structure.

Creating an IsA Method

Thefile reader I1SA method must accept a string containing the name of thefile to be
read asits only parameter, and must determine whether thefileis of the proper typeto
be read by your file reader. If the fileis of the correct type, the ISA method must
return 1; if thefileis not of the correct type, the ISA method should display an error
message and return 0.

See “IDLitReader::IsA” in the IDL Reference Guide manual for additional details.
Example IsA Method
FUNCTI ON Exanpl eReader: : 1 sA, strFil enanme
i Dot = STRPOS(strFilename, '.', /REVERSE_SEARCH)
IF (iDot GI 0) THEN BEG N
fileSuffix = STRUPCASE(STRM D(strFil ename, iDot + 1))
| F (STRUPCASE(fil eSuffix) EQ'PPM) THEN RETURN, 1
ENDI F
self -> | DLitlMessaging:: Error Message, $

["The specified file is not a PPMfile."], $
SEVERITY = 0, TITLE="Wong File Type"

iTool Developer’s Guide Creating a New File Reader

174 Chapter 8: Creating a File Reader

RETURN, O

END

Discussion

Note
Our example IsA method will simply check the filename for the presence of the
proper filename extension. A more sophisticated I1SA method would actually inspect
the contents of the specified file.

The IsA method accepts a string that contains a file name. Using the supplied file
name, we first search backwards from the end of the name until we locate a dot
character. If the filename contains a dot, we extract the string that follows the dot and
convert it to upper case. If the extracted string is' PPM , we return success, if the
extracted string isnot ' PPM or if thereis no dot in the file name, we issue an error
using the IDLitIMessaging::ErrorM essage method and return failure.

Creating a GetData Method

Thefile reader GetData method does the work of the file reader, first creating an IDL
variable or variables to contain the data read from the file, then placing the datainto
an iTool data object. If this processis successful, the GetData method must place the
created data object in the variable supplied as the method’s only argument and return
1 for success. If the processis not successful, the GetData method must return 0.

See“|IDLitReader::GetData” in the IDL Reference Guide manual for additional
details.

Example GetData Method
FUNCTI ON Exanpl eReader: : Get Dat a, ol nageDat a

; Get the nanme of the file currently associated with the reader.
filename = self -> GetFil enane()

Read the file.
READ PPM fil ename, inmage

Store image data in Inage Data object.
ol mageData = OBJ_NEW' | DLi t Dat al DLI mage', $
NAME = FI LE_BASENAME(fi | eNane))

| F OBJ_VALI D(ol mageData) THEN BEG N

RETURN, ol nageData -> Set Data(i mage, '|magePi xels', /NO _COPY)
ENDI F

Creating a New File Reader iTool Developer’s Guide

Chapter 8: Creating a File Reader 175

RETURN, O

END
Discussion

The GetData method accepts a single argument, which is a named variable that will
contain the data object. Our GetData method's first step is to retrieve the file name of
the file on which the method is being called using the GetFilename method. Since our
examplefile reader reads datafrom PPM files, the file name is then passed to the IDL
READ_PPM procedure. An IDLitDatalmage object that will hold the image dataiis
created in the named variable specified by the argument to the GetData method
(olmageData, in this case); the NAME property set to the filename of the original
datafile. We check to ensure that the ol mageData object was created successfully and
add the image data returned by the READ_PPM procedure using the
IDLitData::SetData method. Note the use of the NO_COPY keyword to prevent
making copies of the image data array, which could be quite large. Finally, we return
the value returned by the SetData method (1 for success, O for failure), or we return 0
if olmageDatais not avalid object.

Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
data types of those fields. The object class structure must have been defined before
any objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure
named Obj ect C ass__def i ne (where ObjectClass is the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle’ in Chapter 22 of the Building IDL Applications manual.

Subclassing from the IDLitReader Class

The IDLitReader classisthe base classfor all iTool file readers. In amost all cases,
new file readers will be subclassed either from the IDLitReader class or from aclass
that is asubclass of IDLitReader.

See “|IDLitReader” in the IDL Reference Guide manual for details on the methods
and properties available to classes that subclass from IDLitReader.

iTool Developer’s Guide Creating a New File Reader

176 Chapter 8: Creating a File Reader

Example Class Structure Definition

The following is the class structure definition for the Exanpl eReader file reader
class. This procedure should be the last procedure in afile named
exanpl er eader __defi ne. pro.

PRO Exanpl eReader __Defi ne

struct = { Exanpl eReader, $
| NHERI TS | DLi t Reader $

}
END
Discussion

The purpose of the structure definition routine isto define anamed IDL structure
with structure fields that will contain the visualization object instance data. The
structure name should be the same as the visualization's class name — in this case,
Exanpl eReader.

Like many iTool file reader classes, Exanpl eReader is created as a subclass of the
IDLitReader class. File reader classesthat subclass from IDLitReader classinherit all
of the standard iTool file reader features, as described in “ Subclassing from the
IDLitReader Class’ on page 175.

The ExampleReader class has no instance data of its own. For a more complex
example, see “Example: TIFF File Reader” on page 179.

Creating a New File Reader iTool Developer’s Guide

Chapter 8: Creating a File Reader 177

Registering a File Reader

Before afile reader can be used by an iTool to read in afile, the file reader’s class
definition must be registered as being available to the iTool. Registering afile reader
with the iTool links the class definition file that contains the actual IDL code that
defines the file reader with asimple string that names the reader. Code that calls afile
reader in an iTool uses the name string to specify which reader should be created.

Using IDLitTool::RegisterFileReader

In most cases, you will register afile reader with the iTool intheiTool’s class Init
method. Registration ensures that the file reader is available when the iTool attempts
touseit toread afile. (See“Creating aNew iTool Class’ on page 69 for details on the
iTool class Init method.)

To register afile reader, call the IDLitTool::RegisterFileReader method:

self -> RegisterFil eReader, Reader_Type, Reader Type_O ass_Nane, $
I CON = icon
where Reader_Type is the string you will use when referring to the file reader,
ReaderType Class Nameis a string that specifies the name of the classfile that
contains the file reader’s definition, and icon is a string containing the name of a
bitmap file to be used in the preferences browser.

Note
Thefile Reader Type_Cl ass_Nane__defi ne. pr o must exist somewherein
IDL’s path for the file reader to be successfully registered.

See“IDLitTool::RegisterFileReader” in the IDL Reference Guide manual for details.
Specifying Useful Properties

You can set any property of the IDLitReader and IDLitComponent classes when
registering afile reader. The following properties may be of particular interest:

ICON

A string value giving the name of an icon to be associated with this object. Typically,
this property is the name of a bitmap file to be used when displaying the object in a
tree view. See “Icon Bitmaps’ on page 28 for details on where bitmap icon files are
located.

iTool Developer’s Guide Registering a File Reader

178 Chapter 8: Creating a File Reader

Unregistering a File Reader

If you are creating anew iTool from an existing iTool class, you may want to remove
afilereader registered for the existing class from your new tool. This can be useful if
you have an iTool class that implements all of the functionality you need, but which
registers afile reader you don’t want included in your iTool. Rather than recreating
theiTool classto removethefile reader, you could create your new iTool classin such
away that it inherits from the existing iTool class, but unregisters the unwanted file
reader.

Unregister afile reader by calling the IDLitTool::UnregisterFileReader method in the
Init method of your iTool class:

self -> UnregisterFil eReader, identifier
where identifier isthe string name used when registering the file reader.

For example, suppose you are creating a new iTool that subclasses from a standard
iTool that is based on the IDLitToolbase class. If you wanted your new tool to behave
just like the a standard tool, with the exception that it would not read PNG files, you
could include the following method call in your iTool’s Init method:

self -> UnregisterFil eReader, 'PNG Fil e Reader'
Finding the Identifier String

To find the string value used as the identifier parameter to the UnregisterFileReader
method, you must inspect the class file that registers the file reader. In the case of our
example, you would inspect thefilei dl i t t ool base__defi ne. pro tofind the
following call to the RegisterFileReader method:

self -> RegisterFileReader, 'PNG File Reader', 'IDLitReadPNG

The first argument to the RegisterFileReader method (' PNG Fi | e Reader') isthe
string name of the file reader.

Unregistering a File Reader iTool Developer’s Guide

Chapter 8: Creating a File Reader 179

Example: TIFF File Reader

This example creates afile reader to read TIFF format files. The TIFF file reader is
included inthefileidlitreadtiff__define. pro,located inthe DL distribution
inthel i b/itool s/ conponent s subdirectory of the main IDL directory.

Class Definition File

The class definitionfori dl i t readti f f consistsof an Init method, an ISA method,
a GetData method, GetProperty and SetProperty methods, and a class structure
definition routine. As with all object class definition files, the class structure
definition routine is the last routine in the file, and the file is given the same name as
the class definition routine (with the suffix . pr o appended).

Init Method
FUNCTI ON I DLit ReadTI FF: : Init, _EXTRA = _extra

Call the superclass Init nethod
IF (self -> IDLitReader::Init(["tiff", "tif"],$
FILETYPE="TIFF", NAME="Tiff Files", $
DESCRI PTION="TIFF File format", $
_EXTRA = _extra) NE 1) THEN $
RETURN, O

Initialize the instance data field
self. _index =0

Regi ster the index property
self -> RegisterProperty, 'IMAGE_INDEX , /INTEGER $
Description="Index of the image to read fromthe TIFF file.'

RETURN, 1

END
Discussion

Thefirstitem in our class definition fileisthe Init method. The Init method’s function
signature is defined first, using the class name IDLitReadTIFF. The EXTRA
keyword inheritance mechanism allows any keywords specified in acall to the Init
method to be passed through to routines that are called within the Init method even if
we do not know the names of those keywords in advance.

iTool Developer’s Guide Example: TIFF File Reader

180

Chapter 8: Creating a File Reader

Next, we cal the Init method of the superclass. In this case, we are creating asubclass
of the IDLitReader class; this provides us with all of the standard i Tool file reader
functionality automatically. Any “extra’ keywords specified in the call to our Init
method are passed to the IDLitReader::Init method via the keyword inheritance
mechanism.

We specify alist of accepted filename extensions(ti ff andti f, inthiscase) viathe
Extensions argument, and set the FILETY PE keyword. We specify avalue for the
NAME property of the reader object (thisis displayed in the system preferences
dialog) and include a description of the reader viathe DESCRIPTION keyword.
Finally, we use the EXTRA keyword inheritance mechanism to pass through any
keywords provided when the Init method is called.

Our TIFF reader object has asingle instance datafield: _index, which is used to store
the index number of the image to read from amulti-image TIFFfile. We initialize this
instance datafield to 0, and register the IMAGE_INDEX property to provide access
to thisfield viathe property sheet interface.

Finally, we return the value 1 to indicate successful initialization.

IsA Method

FUNCTI ON | DLi t ReadT! FF: : I sa, strFil enanme
RETURN, QUERY_TI FF(strFil enane);
END
Discussion

The IsA method for our TIFF file reader is simple: we use the IDL QUERY _TIFF
function to determine whether the specified fileisa TIFF file, returning the function’s
return value.

GetData Method

FUNCTI ON | DLi t ReadT! FF: : Get Dat a, ol nageDat a
filename = self -> GetFil enanme()

I F (QUERY_TI FF(fil ename, flnfo, | MAGE I NDEX = self._index) EQ 0)
$
THEN RETURN, O

IF (flnfo.has_palette) THEN BEG N
i mage = READ TI FF(fil ename, pal Red, pal Green, pal Blue, $
I MAGE_| NDEX = sel f. _index)

Example: TIFF File Reader iTool Developer’s Guide

Chapter 8: Creating a File Reader 181

ELSE
i mge = READ TIFF(fil enanme, | MAGE_ | NDEX = sel f._index)
ENDI F

Store image data in I nage Data object.
ol mageData = OBJ_NEW' | DLi t Dat al rage', $
NAMVE = FI LE_BASENAME(fi | eNane))

result = olmageData -> SetData(inmage, 'Inage', /NO _COPY)

| F (RESULT EQ 0) THEN $
RETURN, 0

Store palette data in |Image Data object.
IF (fInfo.has_palette) THEN $
result = olnmageData -> Set Data(TRANSPOSE([[pal Red], $
[pal Green], [palBlue]]), 'Palette')

IF finfo.numinmges GI' 1 THEN $
sel f -> | DLitl Messaging: : St at usMessage, $
' Read channel " +strtrimself._index, 2)

RETURN, result

END
Discussion

The GetData method for our TIFF file reader begins by retrieving the name of thefile
associated with the reader object. We then use the IDL QUERY _TIFF function to
check whether the image specified by the value of the IMAGE_INDEX property
(stored inthe _i ndex instance data field) exists, returning O for failureif the
specified image does not exist.

QUERY _TIFF also returns a structure containing information about the image; we
use this structure to determine whether the image has a palette. We use the presence
of a palette to choose the correct call to the READ_TIFF function, which places the
image datain a set of local variables.

Next, we construct an | DLitDatal mage object to store the image data, using the base
name of the image file for the object’s NAME property. We use the SetData method
to place the image datainto the newly created image data object, specifying the string
"I mage' asthedataobject’sidentifier. A check of the return value from the SetData
method allows us to return O from our GetData method if we are unable to store the
image data in the image object for any reason.

If the image includes pal ette data, we store the array of red, green, and blue values
using the SetData method, specifying' Pal ett e' astheidentifier. The palette

iTool Developer’s Guide Example: TIFF File Reader

182 Chapter 8: Creating a File Reader

variables returned by READ_TIFF represent image planes; since the IDLitVisimage
visualization type that we will use to display the image expects data interleaved by
pixel, we use the TRANSPOSE function to convert the pal ette data into the correct
format.

Finally, we use the StatusMessage method of the IDLitIMessaging classto report to
the user which image was retrieved from the TIFF file. The message is displayed in
the status area of the iTool window.

GetProperty Method

PRO | DLI t ReadTl FF: : Get Property, | MAGE_| NDEX = | MAGE_| NDEX, $
_REF_EXTRA = _extra

| F (ARG _PRESENT(i mage_i ndex)) THEN $
i mage_i ndex= sel f. _i ndex

IF (N_ELEMENTS(_extra) GI 0) THEN $
self -> | DLitReader:: GetProperty, _extrA = _extra

END
Discussion

The GetProperty method for our TIFF file reader supports a single property named
IMAGE_INDEX. If this property is specified in the call to the GetProperty method,
itsvalueisretrieved from the _i ndex instance datafield. Any other properties
included in the method call are passed to the superclass GetProperty method.

SetProperty Method

PRO I DLI t ReadTI FF: : Set Property, | MAGE | NDEX = | MAGE | NDEX, $
_EXTRA = _extra

I F (N_ELEMENTS(i nage_i ndex) GI 0) THEN $
sel f._index = inmage_index

| F (N_ELEMENTS(_extra) GI 0) THEN $
self -> | DLitReader:: SetProperty, _extrA = _extra

END
Discussion

The SetProperty method for our TIFF file reader supports a single property named
IMAGE_INDEX. If this property is specified in the call to the SetProperty method,
itsvalueisplaced inthe _i ndex instance datafield. Any other propertiesincluded in
the method call are passed to the superclass SetProperty method.

Example: TIFF File Reader iTool Developer’s Guide

Chapter 8: Creating a File Reader 183

Class Definition

PRO | DLi t ReadTl FF__Defi ne

struct = {1 DLitReadTl FF, $
inherits IDLitReader, $
_index : 0 $
}
END
Discussion

Our class definition routine is very simple. We create an IDL structure variable with
the name | DLi t ReadTI FF, specifying that the structure inherits from the
IDLitReader class. The structure has a single instance data field named _i ndex,
which we specify as an integer value.

iTool Developer’s Guide Example: TIFF File Reader

184 Chapter 8: Creating a File Reader

Example: TIFF File Reader iTool Developer’s Guide

Chapter 9:

Creating a File Writer

This chapter describes the process of creating an iTool file writer.

Overviewcoviiiiinnannnn. 186 UnregisteringaFileWriter 202
Creating aNew FileWriter 190 Example: TIFFFileWriter 203
Registering aFileWriter 201

iTool Developer’s Guide 185

186

Chapter 9: Creating a File Writer

Overview

A filewriter isan iTool component object class that defines how data stored in the
iTool data manager can be exported to afile. File writers have mechanisms for
manipulating data stored in iTool data objects into the proper format for agiven file
type. Some examples of iTool file writers are:

the ASCII file writer, which usesthe IDL PRINTF procedure to write datato a
text file.

various image file writers, which allow the user to save datain JPEG, BMP,
PNG, and other well-defined image format files,

ageneric binary file writer, which uses the IDL WRITEU procedure to write
unformatted binary datato afile.

A number of standard file writers are predefined and included in the IDL iTools
package; if none of the predefined file writers suits your needs, you can create your
own file writer by subclassing either from the base IDLitWriter class on which all of
the predefined file writers are based, or from one of the predefined file writers.

The File Writer Creation Process

To create anew iTool file writer, you will do the following:

Choose aniTool filewriter class on which your new operation will be based. In
amost all cases, you will base your new operation on the IDLitWriter class,
which handles registration of standard file properties and provides standard
messaging features.

Provide methods that extract the image data from the data object and create a

fileusing IDL's output routines (PRINT, WRITE, or one of the IDL WRITE_*
routines).

This chapter describes the process of creating a new file writer based on the
IDLitWriter class.

Overview

iTool Developer’s Guide

Chapter 9: Creating a File Writer 187

Predefined iTool File Writers

TheiTool system distributed with IDL includes a number of pre-defined file writers.
You can include these file writersin an iTool directly by registering the class with
your iTool (as described in “ Registering a File Writer” on page 201). You can also
create a new file writer class based on one of the pre-defined classes.

IDLitWriteASCII

TheiTools ASCII file writer usesthe IDL PRINTF procedure to print stringsto afile.
Registered Properties

STRING_SEPARATOR — A string that is used to separate the values stored in the
ASCII file.

USE_DEFAULT_FORMAT — A boolean value that specifieswhether adefault format
string should be used.

STRING_FORMAT — A string specifying the format string to be used when writing
the data to the ASCI| file. See “Format Codes’ in Chapter 10, “Files and
Input/Output” in the Building IDL Applications manual for a discussion of format
codes.

Note
The format code should not include parentheses.

IDLitWriteBinary

TheiTools Binary file writer uses the IDL WRITEU procedure to write unformatted
binary datato afile.

Registered Properties

None
IDLitWriteBMP

TheiTools BMP file writer uses the IDL WRITE_BMP procedure to write an image
and its color table vectors to a Microsoft Windows Version 3 device independent

bitmap file (. brp).
Registered Properties

None

iTool Developer’s Guide Predefined iTool File Writers

188 Chapter 9: Creating a File Writer

IDLitWritelSV

TheiTools ISV filewriter saves the current iTool state, including datain the data
manager, visualizations, annotations, and operation property settingsto afilewith the
extension . i sv. ISV files can berestored by launching an iTool and selecting the file
using the File —» Open menu item.

Registered Properties

None
IDLitWriteJPEG

TheiTools JPEG file writer usesthe IDL WRITE_JPEG procedure to write
compressed images to files. JPEG (Joint Photographic Experts Group) isa
standardized compression method for full-color and gray-scale images.

Registered Properties

QUALITY — 1An integer specifying the quality index, in the range of O (terrible) to
100 (excellent) for the JPEG file. The default value is 75, which corresponds to very

good quality. Lower values of QUALITY produce higher compression ratios and
smaller files.

IDLitWritePICT

TheiTools PICT file writer usesthe IDL WRITE_PICT procedure to write an image
and its color table vectorsto aPICT (version 2) format imagefile. The PICT format is
used by Apple Macintosh computers.

Registered Properties

None
IDLitWritePNG

TheiTools PNG file writer usesthe IDL WRITE_PNG procedure to write an image
to a Portable Network Graphics (PNG) file. The datain thefileis stored using
lossless compression with either 8 or 16 data bits per channel, based on the input IDL
variable type.

Registered Properties

None

Predefined iTool File Writers iTool Developer’s Guide

Chapter 9: Creating a File Writer 189

IDLitWriteTIFF
TheiTools TIFF filewriter usesthe IDL WRITE_TIFF procedure to write TIFF files.

Registered Properties

None

iTool Developer’s Guide Predefined iTool File Writers

190 Chapter 9: Creating a File Writer

Creating a New File Writer

The process of creating an visualization typeis outlined in the following sections:
e “Creating an Init Method” on page 190
e “Creating a Cleanup Method” on page 194
e “Creating a GetProperty Method” on page 195
e “Creating a SetProperty Method” on page 196
e “Creating a SetData Method” on page 197
e “Creating the Class Structure Definition” on page 199

Creating an Init Method
Thefile writer class Init method handles any initialization required by the file writer
object, and should do the following:
* define the Init function method
e cdl the Init methods of any superclasses

e register any properties of your file writer, and set property attributes as
necessary

e perform other initialization steps as necessary

e return thevalue 1if the initialization steps are successful, or 0 otherwise
Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method via IDL’s keyword inheritance mechanism. The
Init method for afile writer generally looks something like this:

FUNCTION MyWiter::Init, MYKEYWORDL = nykeywordl, $
MYKEYWORD2 = nykeyword2, ..., _REF_EXTRA = _extra

where MyWriter is the name of your file writer class and the MYKEYWORD
parameters are keywords handled explicitly by your Init function.

Use keyword inheritance (the _REF_EXTRA keyword) to pass keyword parameters
through to any called routines as necessary. (See “Keyword Inheritance” in Chapter 4

Creating a New File Writer iTool Developer’s Guide

Chapter 9: Creating a File Writer 191

of the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.)

Superclass Initialization

Thefile writer class Init method should call the Init method of any required
superclass. For example, if your file writer is based on an existing file writer class,
you would call that class' Init method:

self -> SoneFileWiterC ass::Init(_EXTRA = _extra)

where SomeFileWriterClass is the class definition file for the file writer on which
your new file writer is based.

Note
Your file writer class may have multiple superclasses. In general, each superclass
Init method should be invoked by your class’ Init method.

Error Checking

Rather than simply calling the superclass Init method, it is a good idea to check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method; if the returned valueis 0
(indicating failure), the current Init method also immediately returns with avalue of
0:

IF (self -> SoneFileWiterQass::Init() EQO0) THEN RETURN, 0

This convention is used in all file writer classesincluded with IDL. RSI strongly
suggests that you include similar checks in your own class definition files.

Keywords to the Init Method

Properties of the file writer class can be set in the Init method by specifying the
property names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitWriter class, IDLitComponent class, and
IDLitIMessaging class are available to any file writer class. See “IDLitReader
Properties’, “IDLitComponent Properties’, and “IDLitIMessaging Properties’ in the
IDL Reference Guide manual.

Use keyword inheritance (the _EXTRA keyword) to pass keyword parameters
through to the superclass as necessary. (See “Keyword Inheritance” in Chapter 4 of
the Building IDL Applications manual for details on IDL’'s keyword inheritance
mechanism.)

iTool Developer’s Guide Creating a New File Writer

192

Chapter 9: Creating a File Writer

Standard Base Class

While you can create your new file writer class from any existing file writer class, in
many cases, file writer classes you create will be subclassed directly from the base
class IDLitWriter:

IF (self -> IDLitWiter::Init(Extensions, TYPES = types, $
_EXTRA = _extra) EQO0) $
THEN RETURN, O

where Extensionsis astring or array of strings specifying the filename extensions
readable by your file writer and typesis astring or array of strings specifying the
iTool data types for which thiswriter is available. (See “iTool Data Types’ on
page 34 for details on iTool datatypes.)

Note
The value of the Extensions argument is used only to display the proper filename
filter when aFile Save dialog is displayed — it is not acheck for the proper filetype.

The IDLitWriter class provides the base iToal file writer functionality used in the
tools created by RSI. See “ Subclassing from the IDLitWriter Class’ on page 199 for
details.

Return Value

If al of the routines and methods used in the Init method execute successfully, it
should indicate successful initialization by returning 1. Other file writer classes that
subclass from your file writer class may check this return value, as your routine
should check the value returned by any superclass Init methods called.

Registering Properties

File writer objects can register properties with the iTool; registered properties show
up in the property sheet interface shown in the system preferences browser (described
in “ Properties of theiTools System” on page 64), and can be modified interactively
by users. The iTool property interface is described in detail in Chapter 4, “Property
Management”.

Register a property by calling the RegisterProperty method of the IDLitComponent
class:

self -> RegisterProperty, Propertyldentifier [, TypeCode] $
[, ATTRI BUTE = val ue]

Creating a New File Writer iTool Developer’s Guide

Chapter 9: Creating a File Writer 193

where Propertyldentifier isastring that uniquely identifies the property, TypeCodeis
an integer between 0 and 9 specifying the property datatype, and ATTRIBUTE isa
property attribute. See “ Registering Properties’ on page 54 for details.

Note
A file writer need not register any properties at al, if the write operation issimple.
Many of the standard iTool image file writer work without registering any
properties.

Setting Property Attributes

If aproperty has already been registered, perhaps by a superclass of your file writer
class, you can change the registered attribute values using the SetPropertyAttribute
method of the IDLitComponent class:

self -> SetPropertyAttribute, ldentifier

where ldentifier is the name of the keyword to the GetProperty and SetProperty
methods used to retrieve or change the value of this property. (The Identifier is
specified in the call to RegisterProperty either via the PropertyName argument or the
IDENTIFIER keyword.) See “Property Attributes” on page 58 for additional details.

Passing Through Caller-Supplied Property Settings

If you haveincluded the REF EXTRA keyword in your function definition, you can
use IDL’s keyword inheritance mechanism to pass any “extra’ keyword values
included in the call to the Init method through to other routines. One of the things this
allowsyou to do is specify property settings when the Init method is called; simply
include each property’s keyword/value pair when calling the Init method, and include
the following in the body of the Init method:

I F (N_ELEMENTS(_extra) GI 0) THEN $
self -> MyWiter::SetProperty, _EXTRA = _extra

where MyWriter is the name of your file writer class. Thisline has the effect of
passing any “extra’ keyword values to your file writer class' SetProperty method,
where the can either be handled directly or passed through to the SetProperty
methods of the superclasses of your class. See “Creating a SetProperty Method” on
page 196 for details.

Example Init Method
FUNCTI ON Exanpl eWiter::lnit, _EXTRA = _extra

IF (self -> IDLitWiter::Init('ppm, TYPE='IDLIMAGE , $
NAVE=' Portabl e Pixmap (PPM File', $

iTool Developer’s Guide Creating a New File Writer

194 Chapter 9: Creating a File Writer

DESCRI PTION="PPM File Witer", $
_EXTRA = _extra) EQO) THEN $
RETURN, O

RETURN, 1

END
Discussion

The Exanpl eW i t er classisbased onthe IDLitWriter class (discussed in
“Subclassing from the IDLitWriter Class” on page 199). Asaresult, al of the
standard features of aniTool filewriter class are already present. We don’'t define any
keyword values to be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword values through to methods called
within the Init method. The Exanpl eW i t er Init method does the following things:

1. Cadlsthelnit method of the superclass, IDLitWriter. We specify alist of
accepted filename extensions (only ppm in this case) via the Extensions
argument, and set the TY PES keyword. We include a description of the writer
viathe DESCRIPTION keyword. Finally, we use the EXTRA keyword
inheritance mechanism to pass through any keywords provided when the
Exanpl eWi t er Init method is called.

2. Returnstheinteger 1, indicating successful initialization.
Creating a Cleanup Method
Thefile writer class Cleanup method handles any cleanup required by the file writer
object, and should do the following:
¢ destroy any pointers or objects created by the file writer

e cal the superclass Cleanup method

Calling the superclass’ cleanup method will destroy any objects created when the
superclass was initialized.

Note
If your file writer classis based on the IDLitWriter class, and does not create any
pointers or objects of its own, the Cleanup method is not strictly required. It is
always safest, however, to create a Cleanup method that calls the superclass
Cleanup method.

See " IDLitWriter::Cleanup” in the IDL Reference Guide manual for additional
details.

Creating a New File Writer iTool Developer’s Guide

Chapter 9: Creating a File Writer 195

Example Cleanup Method
PRO Exanpl eWiter::C eanup

;; Cl eanup supercl ass
self -> IDLitWiter::d eanup

END
Discussion

Since our file writer object does not have any instance data of its own, the Cleanup
method simply calls the superclass Cleanup method.

Creating a GetProperty Method

Thefilewriter class GetProperty method retrieves property values from thefile writer
object instance or from instance data of other associated objects. It should retrieve the
requested property value, either from the file writer object’s instance data or by
calling another class GetProperty method.

Note
Any property registered with acall to the RegisterProperty method must be listed as
akeyword to the GetProperty method either of the visualization class or one of its
superclasses.

Note
A file writer need not register any properties at all, if the write operation is simple.
Many of the standard iTool image file writer work without registering any
properties.

See “IDLitWriter::GetProperty” in the IDL Reference Guide manual for additional
details.

Example GetProperty Method
PRO Exanpl eWiter:: GetProperty, _REF_EXTRA = _extra

I F (N_ELEMENTS(_extra) GI 0) THEN $
self -> IDLitWiter::GetProperty, _EXTRA = _extra

END

iTool Developer’s Guide Creating a New File Writer

196

Chapter 9: Creating a File Writer

Discussion

The GetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the file writer. Since the file writer we are creating has
no properties of its own, there are no keywords explicitly defined. Note the use of the
keyword inheritance mechanism to allow usto get properties from the

Exanmpl eWi t er class superclasses without knowing the names of the properties.

Since our Exanpl eW i t er class has no properties of its own, we simply call the
superclass’ GetProperty method, passing in al of the keywords stored in the
_EXTRA structure.

Creating a SetProperty Method

Thefile writer SetProperty method stores property valuesin the file writer object’s
instance data. It should set the specified property value, either by storing the value
directly in the visualization object’s instance data or by calling another class
SetProperty method.

Note
Any property registered with acall to the RegisterProperty method must be listed as
a keyword to the SetProperty method either of the visualization class or one of its
superclasses.

Note
A file writer need not register any properties at all, if the write operation is simple.
Many of the standard i Tool image file writer work without registering any
properties.

See “IDLitWriter::SetProperty” in the IDL Reference Guide manual for additional
details.

Example SetProperty Method

PRO Exanpl eWiter::SetProperty, _EXTRA = _extra

| F (N_ELEMENTS(_extra) GI 0) THEN $
self -> IDLitWiter::SetProperty, _EXTRA = _extra

END
Discussion

The SetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the visualization type. Since the file writer we are

Creating a New File Writer iTool Developer’s Guide

Chapter 9: Creating a File Writer 197

creating has no properties of its own, there are no keywords explicitly defined. Note
the use of the keyword inheritance mechanism to alow us to set properties from the
Exanpl eWi t er class superclasses without knowing the names of the properties.

Using the N_ELEMENTS function, we check to see whether any properties were
specified via the keyword inheritance mechanism. If any keywords were specified,
we call the superclass SetProperty method, passing in al of the keywords stored in
the EXTRA structure.

Creating a SetData Method

Thefile writer SetData method does the work of the file writer, extracting data from
the selected i Tool data object and writing the data to a file using some method. If the
process is successful, the SetData method must return 1 for success.

In our example, we write the selected data to a Portable Pixmap (PPM) file. Asa
result, we do some additional checking to ensure that the data that the user has
selected can be displayed as an image.

See“IDLitWriter::SetData” in the IDL Reference Guide manual for additional
details.

Example SetData Method
FUNCTI ON Exanpl eWiter:: Set Data, ol nageData

Pronpt user for a file in which to save the data
strFilename = self -> CGetFil enane()
IF (strFilename EQ'') THEN $

RETURN, 0 ; failure

Check validity of the input data object
I F (~ OBJ_VALID(ol mageData)) THEN BEG N
self -> ErrorMessage, ['Invalid image data object'], $
TITLE = "Error', SEVERITY = 2
RETURN, O ; failure
ENDI F

Check the i Tool data type of the selected data object.
If the data is not of a type that can be witten to an
imge file, display an error nessage.
oData = ol nageData -> Get ByType("1DLI MAGE', COUNT = count)
IF (count EQ 0) THEN $;; no image, inmge pixels?
oData = ol nageData -> Get ByType("|DLI MAGEPI XELS", $
COUNT = count)
IF (count EQ 0) THEN $;; no image, array 2d?
oData = ol mageData -> Get ByType("| DLARRAY2D', COUNT = count)

iTool Developer’s Guide Creating a New File Writer

198

Chapter 9: Creating a File Writer

IF (count EQ 0) THEN BEG N
self -> ErrorMessage, $
["Invalid data provided to file witer."], $
TITLE="Error", SEVERITY = 2
RETURN, 0 ; failure
END

; Turn a 1-D object array into a scal ar object.
oDat a = oDat a[0]

; Determi ne whether the data is an inage.
i slmage = obj _isa(oData, "IDLitDatal DLI nrage")

; If data is an inmage, get inmage pixels, otherw se
; turn data into an image.
IF (islmage NE 0) THEN BEG N

result = oData -> GetData(inage, 'l nmagePixels')
ENDI F ELSE BEGA N

result = oData -> GetData(inmage)
ENDEL SE

Check the result of the GetData nethod.
IF (result EQ 0) THEN BEQ N
self -> ErrorMessage, ['Error retrieving image data'], $
TITLE = "Error', SEVERITY = 2
RETURN, O ; failure
ENDI F

; Get nunber of dinensions of inage array.
ndi m = Sl ZE(i mage, / N_DI MENSI ONS)

; Wite to a PPMfile. Use REVERSE to make inmage appear
;. With correct orientation.
WRI TE_PPM strFil ename, REVERSE(irmage, ndin)

; Return 1 for success.
RETURN, 1

END
Discussion

The SetData method accepts an IDLitData abject (olmageData) as its input
parameter. Before processing the input data, the method prompts the user for afilein
which to save the image, using the GetFilename method of the IDLitWriter object.

After securing afilename, the method proceeds to check the input data object. First it
checks to make sure that the input object isvalid. Then it attempts to retrieve data of
an appropriate i Tool datatype from the data abject; in this example, the method tries

Creating a New File Writer iTool Developer’s Guide

Chapter 9: Creating a File Writer 199

to extract an data of one of the following types using the GetBy Type method of the
IDLitData class:

 |IDLIMAGE
 |IDLIMAGEPIXELS
« IDLARRAY2D

If no data of any of these typesis found, the method displays an error message and
exits.

Once the method has obtained an appropriate data object, it checks to determine
whether the data object is an IDLitDatal DLImage object; if so, it attemptsto retrieve
the image pixelsfrom the data object; otherwiseit simply retrievesthe dataarray. The
data retrieved by the GetData method is stored in the variable i mage. The method
then checks the return value from the GetData method to determine whether the
returned valueisvalid.

Using the valid image data, the method determines the number of dimensions and
then uses the WRITE_PPM procedure to create an image file. The image data must
be processed by the REVERSE function in order to make it appear in the output file
with the correct orientation.

Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
data types of those fields. The object class structure must have been defined before
any objects of the type are created. In practice, when the IDL OBJ NEW function
attempts to create an instance of a specified object class, it executes a procedure
named Cbj ect Cl ass__def i ne (where ObjectClass is the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle” in Chapter 22 of the Building IDL Applications manual.

Subclassing from the IDLitWriter Class

The IDLitWriter classisthe base class for al iTool file writers. In dmost all cases,
new file will be subclassed either from the IDLitWriter class or from aclassthat isa
subclass of IDLitWriter.

See “IDLitWriter” in the IDL Reference Guide manual for details on the methods
properties available to classes that subclass from IDLitWriter.

iTool Developer’s Guide Creating a New File Writer

200 Chapter 9: Creating a File Writer

Example Class Structure Definition

The following isthe class structure definition for the Exanpl eW i t er file writer
class. This procedure should be the last procedure in afile named
exanpl ewriter__define.pro.

PRO Exanpl eWiter__Define

struct = { ExanpleWiter, $
INHERI TS IDLitWiter $

}
END
Discussion

The purpose of the structure definition routine isto define anamed IDL structure
with structure fields that will contain the visualization object instance data. The
structure name should be the same as the visualization's class name — in this case,
Exanmpl eWi ter.

Like many iTool file writer classes, Exanpl eW i t er is created as a subclass of the
IDLitWriter class. File writer classes that subclass from IDLitWriter class inherit al
of the standard iTool file writer features, as described in “ Subclassing from the
IDLitWriter Class’ on page 199.

The ExampleWriter class has no instance data of its own. For a more complex
example, see “Example: TIFF File Writer” on page 203.

Creating a New File Writer iTool Developer’s Guide

Chapter 9: Creating a File Writer 201

Registering a File Writer

Before afile writer can be used by aniTool to write afile, the file writer's class
definition must be registered as being available to the iTool. Registering afile writer
with the iTool links the class definition file that contains the actual IDL code that
defines the file writer with a simple string that names the writer. Code that calls afile
writer in an iTool uses the name string to specify which writer should be created.

Using IDLitTool::RegisterFileWriter

In most cases, you will register afile writer with the iTool in theiTool’s class Init
method. Registration ensures that the file writer is available when the i Tool attempts
to useit to write afile. (See” Creating a New iTool Class’ on page 69 for details on
theiTool class Init method.)

To register afile writer, call the IDLitTool::RegisterFileWriter method:
self -> RegisterFileWiter, Witer_Type, WiterType_d ass_Nane, $
I CON = icon

where Writer_Type is the string you will use when referring to the file writer,
WriterType_Class Name is a string that specifies the name of the class file that
contains the file writer’s definition, and icon is a string containing the name of a
bitmap file to be used in the preferences browser.

Note
ThefileWiter Type_Cl ass_Nane__defi ne. pro must exist somewherein

IDL’s path for the file writer to be successfully registered.

See“IDLitTool::RegisterFileWriter” in the IDL Reference Guide manual for details.
Specifying Useful Properties

You can set any property of the IDLitWriter and | DLitComponent classes when
registering afile writer. The following properties may be of particular interest:

ICON

Set this property to astring value giving the name of an icon to be associated with this
object. Typically, this property is the name of abitmap file to be used when
displaying the object in atree view. See “Icon Bitmaps’ on page 28 for details on
where bitmap icon files are located.

iTool Developer’s Guide Registering a File Writer

202 Chapter 9: Creating a File Writer

Unregistering a File Writer

If you are creating anew iTool from an existing iTool class, you may want to remove
afilewriter registered for the existing class from your new tool. This can be useful if
you have an iTool class that implements all of the functionality you need, but which
registers afile writer you don’t want included in your iTool. Rather than recreating
theiTool classto remove thefile writer, you could create your new iTool classin such
away that it inherits from the existing iTool class, but unregisters the unwanted file
writer.

Unregister afile writer by calling the IDLitTool::UnregisterFileWriter method in the
Init method of your iTool class:

self -> UnregisterFileWiter, identifier
where identifier isthe string name used when registering the file writer.

For example, suppose you are creating a new iTool that subclasses from a standard
iTool that is based on the IDLitToolbase class. If you wanted your new tool to behave
just like a standard tool, with the exception that it would not export PNG files, you
could include the following method call in your iTool’s Init method:

self -> UnregisterFileWiter, '"PNG File Witer'
Finding the Identifier String

To find the string value used as the identifier parameter to the UnregisterFileWriter
method, you must inspect the classfile that registers the file writer. In the case of our
example, you would inspect thefilei dl i t t ool base__defi ne. pro tofind the
following call to the RegisterFileWriter method:

self -> RegisterFileWiter, "PNG File Witer', 'IDLitReadPNG

Thefirst argument to the RegisterFileWriter method (' PNG File Witer')isthe
string name of the file writer.

Unregistering a File Writer iTool Developer’s Guide

Chapter 9: Creating a File Writer 203

Example: TIFF File Writer

This example creates afile writer to write TIFF format files. The TIFF file writer is
included inthefileidlitwitetiff_ _define. pro,locatedinthelDL
distributioninthel i b/ i t ool s/ conponent s subdirectory of the main IDL
directory.

Class Definition File

The class definitionfori dl i twitetiff consistsof an Init method, a SetData
method, and a class structure definition routine. Aswith all object class definition
files, the class structure definition routine isthe last routine in the file, and the fileis
given the same name as the class definition routine (with the suffix . pr o appended).

Init Method
FUNCTION IDLitWiteTIFF::Init, _EXTRA = _extra

IF (self -> IDLitWiter::Init('tiff', TYPES="IDLI MAGE", $
NAME="Tag I mage File Format", $
DESCRI PTION="Tag Inage File Format (TIFF)", $
_EXTRA = _extra) EQ 0) THEN $
RETURN, O

RETURN, 1

END
Discussion

Thefirstitem in our class definition fileisthe Init method. The Init method’s function
signature is defined first, using the class name IDLitWriteTIFF. Note the use of the
_EXTRA keyword inheritance mechanism; this allows any keywords specified in a
call to the Init method to be passed through to routines that are called within the Init
method even if we do not know the names of those keywords in advance.

Next, we call the Init method of the superclass. In this case, we are creating asubclass
of the IDLitWriter class; this provides us with all of the standard iTool file writer
functionality automatically. Any “extra’ keywords specified in the call to our Init
method are passed to the IDLitWriter::Init method via the keyword inheritance
mechanism.

We specify alist of accepted filename extensions (ti f f, in this case) viathe
Extensions argument, and set the TY PES keyword equal to theiTool datatype of data
that can be written using thisfile writer. (TheiTool data types specified by the

iTool Developer’s Guide Example: TIFF File Writer

204 Chapter 9: Creating a File Writer

TY PES keyword must match the iTool datatype of the data selected in the i Tool
Export Wizard in order for the file writer to be available for selection.)

We specify avalue for the NAME property of the writer object (thisis displayed in
the system preferences dialog) and include a description of the writer viathe
DESCRIPTION keyword. Finally, we use the _EXTRA keyword inheritance
mechanism to pass through any keywords provided when the Init method is called.

Finally, we return the value 1 to indicate successful initialization.
SetData Method
FUNCTI ON I DLi t WiteTl FF:: Set Data, ol nageDat a

strFilename = self -> GetFil enane()
IF (strFilename EQ'') THEN $
RETURN, O ; failure

I F (~ OBJ_VALID(ol mageData)) THEN BEG N
MESSAGE, "Invalid image data object.", /CONTI NUE
RETURN, 0 ; failure

ENDI F

result = olnmageData -> GetData(inage, 'I|nagePixels')

if (result eq 0) then begin
MESSAGE, "Error retrieving inmage data.", /CONTI NUE
return, 0 ; failure

endi f

ndi m = S| ZE(i mage, / N_DI MENSI ONS)
CASE ndi m O

2: Begin ; color indexed
success = ol nageData -> GetData(pal ette, 'Palette')
; Check if we have pal ette data.
IF (N_ELEMENTS(pal ette) GI 0) THEN BEG N
red = REFORM pal ette[0, *])
green = REFORM pal ette[1, *])
bl ue = REFORM pal ette[2, *])
ENDI F
END

3: BEGN
dims = S| ZE(i nage, /DI MENSI ONS)
; If we have nore than 3 channels, just keep
; the first 3 (assuned to be RGB).
IF (dinms[0] NE 3) THEN $
i mge = image[0:2, *, *]

Example: TIFF File Writer iTool Developer’s Guide

Chapter 9: Creating a File Writer 205

END
ELSE: RETURN, 0 ; failure
ENDCASE

The REVERSE ensures that other applications will read in
the image right side up.
VWRI TE_TI FF, strFil ename, REVERSE(i mage, ndim, $
RED = red, GREEN = green, BLUE = bl ue

RETURN, 1 ; success

END
Discussion

The SetData method accepts an IDLitData abject (olmageData) as its input
parameter. Before processing the input data, the method prompts the user for afilein
which to save the image, using the GetFilename method of the IDLitWriter object.

After securing afilename, the method proceeds to check the input data object. First it
checks to make sure that the input object isvalid. Then it attempts to retrieve data of
theiTool datatype | magePi xel s from the data object, using the GetData method,
storing the result in the variable i mage. The method then checks the return value
from the GetData method to determine whether the returned value is valid.

Using the valid image data, the method determines the number of dimensions. If the
image array has two dimensions, the method checks the original input data object for
the presence of a palette. If the palette is present, the red, green, and blue vectors are
reformed for later use by the WRITE_TIFF routine.

If the image array has three dimensions, it the dimensions are assumed to be the red,
green, and blue channels.

Finally, the method uses the WRITE_TIFF procedure to create an imagefile. The
image data must be processed by the REVERSE function in order to make it appear
in the output file with the correct orientation.

Class Definition

PRO I DLit WiteTl FF_ Define

struct = {IDLitWiteTlFF, $
inherits IDLitWiter $
}
END
Discussion

iTool Developer’s Guide Example: TIFF File Writer

206 Chapter 9: Creating a File Writer

Our class definition routine is very simple. We create an IDL structure variable with
thenamel DLi t Wi t eTl FF, specifying that the structure inherits from the
IDLitWriter class. The object has no instance data, and thus no instance data fields.

Example: TIFF File Writer iTool Developer’s Guide

Part Ill: Modifying
the 1ITool User
Interface

Chapter 10:
I Tool User Interface
Architecture

This chapter provides an overview of theiTool user interface architecture.

Overviewcoviiiiinnannnn. 210 User Interface Objects 212

iTool Developer’s Guide 209

210

Chapter 10: iTool User Interface Architecture

Overview

Overview

TheiTool user interface architecture is designed to preserve the separation between
the functionality provided by an iTool application and the manner in which that
functionality is presented to the user. While the process of creating a user interface
for theiTool application iscomplex, theideaissimple: theiTool can choose from any
number of user interface styles that present information to the user in unique ways,
depending on the operating environment.

While theinitia release of the iTool component framework includes only one user
interface style, created from IDL’s graphical widget interface toolkit, the iTool
framework design allows for the creation of additional user interface styles. Creating
new interface elements, or even an entirely new user interface, does not require
aterations to the underlying iTool implementation.

Note
Inthefirst release of the IDL iTools system, the functionality necessary to create
entirely new user interface stylesis not fully defined. Future versions of the iTool
system will provide the capability to create additional user interface styles.

Working within an existing interface style, you can add several different types of user
interface elements to your iTools. In rough order of increasing complexity of
implementation, iTool user interface elements include:

« Simple additional interface elements such as custom messages that appear in
the iTool status area, informational dialogs, and simple yes-or-no type
interactive user dialogs. These items can be added to an iTool using built-in
methods of the IDLitIMessaging class. Built-in interface elements are
described in Chapter 11, “Using iTool User Interface Elements’.

e Modal dialogsthat alow the user to provide complex information before an
action is performed by theiTool. Dialog-based interface elements can be
simple, perhaps allowing the user to enter a single numerical value, or
complex, as shown by the iTool Curve Fitting operation’s parameter-
specification dialog. Dialog-based interfaces require the creation of a user
interface service, which can then call code that creates the appropriate dialog
interface for the platform and iTool interface style. User interface services are
described in Chapter 12, “Creating a User Interface Service'.

e iTool panels, which are non-modal collections of interface elements that are
attached to the iTool visualization window. Panels are useful when complex
controls must always be visible alongside a visualization; the iVolume and

iTool Developer’s Guide

Chapter 10: iTool User Interface Architecture 211

ilmage tools provide examples of a panel interface. Panel interfaces are
described in Chapter 13, “Creating a User Interface Panel”.

iTool Developer’s Guide Overview

212 Chapter 10: iTool User Interface Architecture

User Interface Objects

TheiTool user interface object is an instance of the class IDLitUl. The Ul object
provides away for theiTool to communicate with interface elements created using
the IDL widget toolkit. Asthe center of communication between the user interface
and the underlying i Tool functionality, the Ul object provides the following
functionality:

* Access to and communication with the underlying i Tool object.

* Registration and management of dialogs and other sub-elements of the user
interface that are used by the iTool to perform specific tasks.

e Registration of user interface elements that are part of the iTool display itself.

One of the key features of theiTool user interface is the ability to adapt to the
contents of the tool, sensitizing and desensitizing menu items or displaying dialogs or
user interface panels as necessary. The IDLitUI object makes this adaptability
possible while maintaining the slender link between tool functionality and user
interface. The following features of the IDLitUI object make these features possible;

GetTool Method

The IDLitUI::GetTool method provides the means to retrieve an object reference to
the underlying i Tool object from user interface code. Theretrieved reference can then
be used to access data stored in i Tool objects (property values, for example) and to
call other iTool object methods.

Ul Service Registration Methods

The IDLitUI::RegisterUl Service and IDLitUI::UnRegisterUl Service methods allow
user interface code to register (and unregister) user interface services as being
available for use by theiTool interface.

Note
User interface services are more normally registered by an iTool launch routine,
using the ITREGISTER procedure.

User interface services are discussed in detail in Chapter 12, “Creating a User
Interface Service”.

User Interface Objects iTool Developer’s Guide

Chapter 10: iTool User Interface Architecture 213

Widget Registration Methods

The IDLitUI::RegisterWidget and IDLitUI::UnRegisterWidget methods allow user
interface code to register (and unregister) widget callback routines as the target of
OnNotify messages. Registration allows the user interface to receive messages
generated by iTool components and to react accordingly.

Widget registration is discussed in detail in Chapter 13, “ Creating a User Interface
Panel”.

AddOnNotifyObserver Method

The IDLitUI::AddOnNotifyObserver method allows user interface code to register to
receive messages sent via calls to the OnNotify methods of iTool components. This
mechanism allows the user interface to change in response to changesin the
underlying iTool.

Use of the iTool messaging system is discussed in detail in Chapter 13, “Creating a
User Interface Panel”.

DoAction Method

The IDLitUI::DoAction method makes it possible for a user interface element to
launch execution of an operation within the underlying iTool.

Use of the DoAction method to initiate execution of operationsisdiscussed in
Chapter 12, “Creating a User Interface Service’.

iTool Developer’s Guide User Interface Objects

214 Chapter 10: iTool User Interface Architecture

User Interface Objects iTool Developer’s Guide

Chapter 11.

Using ITool User
Interface Elements

This chapter describes user interface elements that can be incorporated into an i Tool without the
need to write any user interface code.

Overviewcoiiiiiinannn. 216 Prompts............cc.iiiiii 219
StatusMessagesSo i i 217 Informational Messages 221

iTool Developer’s Guide 215

216 Chapter 11: Using iTool User Interface Elements

Overview

The IDLitIMessaging class provides methods that allow you to accept and return
feedback viathe iTool interface without writing any interface code yourself. For
many applications, adding the ability to provide status information, prompt the user
for simple input, and display appropriate error messages to the standard i Tool
interface is sufficient; in these cases, no additional code is needed to create and
display user interfaces.

Note
The simple dialogs presented by the I DLitlMessaging methods are similar to those
displayed by the IDL DIALOG_MESSAGE function. Sincetheinitial iTools
release supports only one user interface style (built using the IDL widget interface
toolkit) it may be tempting to use DIALOG_MESSAGE rather than the methods
described in this chapter. Asthe iTools framework matures, however, additional
user interface styles may be created either by RSI or by third-party developers.
Using the built-in IDLitIMessaging methods will ensure that your i Tool
applications continue to function properly when other interface styles are available.

This chapter discusses the use of the basic user interface elements provided by the
IDLitIMessaging class. If your application requires a more complex interface, see
Chapter 12, “Creating a User Interface Service” or Chapter 13, “ Creating a User
Interface Panel”.

Overview iTool Developer’s Guide

Chapter 11: Using iTool User Interface Elements 217

Status Messages

Satus messages are simple text messages displayed in away that does not impede the
user’s operation of theiTool. In the standard i Tool user interface created using the

IDL widget toolkit, status messages are text strings displayed at the bottom of the
iTool window.

00 \/V\/\/\/V\,

-02
-04
-0' 6 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
0 50 100 150
] I >l
|Elic:k and move to translate, <Shift> constraing, or use amow keys P(: 117.6 ¥ -0.03153
i
Status area Probe status area

Figure 11-1: The status areas of a standard iTool.

The IDLitIMessaging class provides two methods that display status messages. See
“IDLitIMessaging” in the IDL Reference Guide manual for details.

StatusMessage

The IDLitIMessaging:: StatusM essage method displays a string value. In the standard
iTool interface created using the IDL widget toolkit, status messages appear in the
status area at the bottom left corner of the iTool window, as shown in Figure 11-1.

In the standard set of i Tools provided with IDL, the status areais used to display
status information for operations or informational messages pertaining to the
currently selected object or manipulator.

The following code places the text “My Status Message” in the status area:
self -> StatusMessage, 'My Status Message'
ProbeStatusMessage
The IDLitIMessaging:: ProbeStatusM essage method displays a string value. In the

standard iTool interface created using the IDL widget toolkit, probe status messages
appear at the bottom right corner of the iTool window, as shown in Figure 11-1.

iTool Developer’s Guide Status Messages

218 Chapter 11: Using iTool User Interface Elements

In the standard set of i Tools provided with IDL, the probe status areais used to
display the position of the cursor within the iTool window.

The following code places the text “X: 300, Y:146” in the status area:
self -> ProbeStatusMessage, 'X 300, Y: 146

In most cases, the values displayed in the probe status area have some relationship to
the position of the cursor or to the action performed by the current manipulator.

Status Messages iTool Developer’s Guide

Chapter 11: Using iTool User Interface Elements 219

Prompts

Prompts solicit information from the user. Prompts are generally presented as modal
dialogs, meaning that the user must respond to the prompt before operation of the
iTool can continue.

Overwrite Yariable? E &llName the Creat... [E3
3 : Enter a string walue
COwerwrite Variable: Plob_¥7 —
My object

oK | Eancell

Figure 11-2: Yes/No and Text Prompt dialogs.

The IDLitIMessaging class provides two methods that prompt for user input. See
“IDLitIMessaging” in the IDL Reference Guide manual for details.

PromptUserYesNo

The IDLitIMessaging::PromptUserYesNo method displays a prompt string along
with Yes and No buttons. In the standard i Tool interface created using the IDL widget
toolkit, Yes/No prompts appear as modal dialogs as shown in Figure 11-2.

Note
The PromptUserYesNo function returns 1 if the dialog executed properly. You must
check the value stored in the variable specified as the Answer argument to
determine which button the user pressed.

The following code asks the user a Yes or No question and performs some action if
the dialog returns properly and the value of the returned variable answer isequal to
1 (aswould be the case if the user clicked Yes):

status = self -> PronptUserYesNo(' Overwrite Variable: Plot_Y , $
answer, TITLE="Overwite Variable?')

IF (status NE 0 & answer EQ 1) THEN BEG N
; do sonething. ..
ENDI F

The value of the TITLE keyword is displayed in the title bar of the dialog box.

iTool Developer’s Guide Prompts

220

Prompts

Chapter 11: Using iTool User Interface Elements

PromptUserText

The IDLitIMessaging::PromptUserText method displays a prompt string and a text-
entry field along with OK and Cancel buttons. In the standard i Tool interface created
using the IDL widget toolkit, text prompts appear as modal dialogs as shown in
Figure 11-2.

Note
The PromptUserText function returns 1 if the user clicks the OK button, or O if the
user clicks the Cancel button.

The following code asks the user to enter atext string, which will be stored in the
variable st ri ngNane:

status = self -> PronptUsertext('Enter a string value', $
stringNane, TITLE = 'Nane the Created Object')

The value of the TITLE keyword is displayed in the title bar of the dialog box. The
variable st at us will contain a1l if the user clicks OK, or a0 if the user clicks
Cancel.

iTool Developer’s Guide

Chapter 11: Using iTool User Interface Elements 221

Informational Messages

Informational Messagesinform the user that some condition has occurred in theiTool
application. The condition may be an error, but it can also be any other occurrence of
which the user should be informed. Informational messages are presented as modal
dialogs, generally with asingle OK button that dismisses the dialog.

Export Complete []
@ The following wariables were exported:
Plat_t

Figure 11-3: An informational message dialog.

The IDLitIMessaging class provides the ErrorM essage method to display
informational messages of all sorts. See “IDLitIMessaging” in the IDL Reference
Guide manual for details.

ErrorMessage

The IDLitIMessaging::ErrorM essage method displays an informational text message
to the user. In the standard i Tool interface created using the IDL widget toolkit,
informational messages appear as modal dialogs as shown in Figure 11-3.

Informational messages can use any of three severity codes, indicating to the user
whether the message is merely informational, is awarning, or reports a serious error.
While the severity setting does not ater the behavior of the dialog, which can only be
dismissed by the user, it can alter the appearance of the dialog. For example, the
dialog shown in Figure 11-3 has a severity setting of 0, or “Informational”.

The following code displays an informational message:

self -> ErrorMessage, ['The follow ng variables were exported:', $
"Plot_Y'], SEVERITY = 0, TITLE = ' Export Conpl et e’

The value of the TITLE keyword is displayed in the title bar of the dialog box.

In addition to the ErrorM essage method, the IDLitIMessaging class provides the
SignalError method, which reports an error condition to the iTool system but which
does not display the message to the user. See“IDLitIMessaging” in the IDL
Reference Guide manual for details.

iTool Developer’s Guide Informational Messages

222 Chapter 11: Using iTool User Interface Elements

Informational Messages iTool Developer’s Guide

Chapter 12:

Creating a User
Interface Service

This chapter describes the process of creating a user interface service.

Overviewcoviiiiinnannnn. 224 RegisteringaUl Service 231
Predefined iTool Ul Services........... 225 Executing a User Interface Service 233
Creating aNew Ul Service 226 Example: Changing a Property Value ... 234

iTool Developer’s Guide 223

224 Chapter 12: Creating a User Interface Service

Overview

A Ul serviceisan iTool component object class that defines how and when a user
interface element is presented to an iTool user. Ul services provide away to separate
platform-independent i Tool functionality from platform-dependent user interface
code. When an iTool needs to display a graphical interface, it simply callsthe
appropriate Ul serviceto display the interface; the iTool itself does not need to know
anything at all about the platform on which it is running. Decisions about how to
display the desired interface are |eft to the Ul service, which can choose from any
number of options based on the platform and user interface style in use.

Note
Intheinitia iToolsrelease, only one user interface styleis supplied: the IDL widget
interface toolkit. Asthe iTools framework continues to grow, additional user
interface styles may be created either by RSI or by third-party developers.

Creating and Using a Ul Service

To create and use anew iTool Ul service, you will do the following:

e Createan IDL function that displaysthe user interface elements. See“ Creating
aNew Ul Service” on page 226 for details.

¢ Register the new Ul service with theiTools system. See “Registering a Ul
Service” on page 231 for details.

« Execute the Ul service from iTool code. See “Executing a User Interface
Service” on page 233 for details.

Overview iTool Developer’s Guide

Chapter 12: Creating a User Interface Service 225

Predefined iTool Ul Services

TheiTool system distributed with IDL includes a number of pre-defined Ul services.
These Ul services are registered with the iTool system, which meansthat you can call
them from any operation, visualization, or other iTool component using the

DoUl Service method of the IDLitTool class.

The majority of the pre-defined Ul services provide interface elements that are
specific to the standard iTool implementation. In most cases, you do not need to call
these services directly; using the existing iTool operation or visualization code that
callsthe Ul serviceis sufficient. If you are creating anew Ul service, you may want
to inspect the code for some of the standard Ul services — they are located in the

l'i b/itool s/ui_w dgets subdirectory of the DL directory and have file names of
theformi dlitui*. pro.

Thefollowing Ul services are generally useful; you may wish to include callsto these
servicesin your own iTool operation or visualization code.

Hourglass Cursor Service

Displays the hourglass cursor. The hourglass cursor is displayed until processing
completes and anew IDL widget event is processed, at which time the previous
cursor is reinstated.

File Name

i dlituihourglass.pro
Registered Service Name
HourGlassCursor

Example

void = oTool -> DoUl Service(' Hourd assCursor', self)

iTool Developer’s Guide Predefined iTool Ul Services

226 Chapter 12: Creating a User Interface Service

Creating a New Ul Service

A user interface service isresponsible for creating a user interface element that is
displayed when aniTool user takes some action. A simple Ul service may do no more
than display the “hourglass’ cursor while an operation is being performed; more
complicated Ul services may be small applications unto themselves.

For simple operations the Ul service routine can contain everything necessary to
implement the Ul service. For more complex interfaces, however, it is often practical
to separate the actual user interface code (that is, the widget creation and event-
handling routines) from the logic of the Ul serviceitself. The latter is the strategy
used by many of the Ul services included with the standard i Tools.

The process of creating a user interface service is outlined in the following sections:
e “Creating the Ul Service Routing” on page 226
e “Creating Supporting User Interface Elements’ on page 229

Creating the Ul Service Routine

The user interface service routine performs the following tasks:

* Manages changes to any properties of the object on which the user interface
element was invoked.

* Managesthe display of the user interface element.

To accomplish these things, the Ul service routine needs areference to theiTool
component on which the service will act, and areference to the IDLitUI object
associated with the current iTool. As aresult, the user interface service routine has the
following signature:

FUNCTI ON Servi ceNane, oUl, oRequester

where ServiceName is the name of the function, oUl is an object reference to the
IDLitUI object associated with the iTool, and oRequester is an object reference to the
iTool component specified in the call to the DoUl Service method.

Note
ServiceName is not necessarily the same as the registered name of the service used
in the call to the DoUl Service method. The registered nameis defined by the call to
the ITREGISTER procedure. See “Registering a Ul Service” on page 231 for
details.

Creating a New Ul Service iTool Developer’s Guide

Chapter 12: Creating a User Interface Service 227

Return Value

The user interface service routine should return 1 if the action succeeds, or O
otherwise.

Retrieving Property Information

The oRequester argument to the user interface service function contains an object
reference to theiTool component on which the Ul service was invoked. Use this
reference to retrieve any properties of the object that are relevant to the operation
being performed by the user interface.

For example, the standard Scal eFact or user interface service displays adialog that
lets the user set the SCALE_FACTOR property of an object. The service uses the
following statement to retrieve the current scale factor from the selected object:

oRequester -> GetProperty, SCALE FACTOR = factor
Retrieving Widget Information

The oUl argument to the user interface service function contains an object reference
to the IDLitUI object associated with the current iTool. You can use this reference to
retrieve the IDL widget identifier of the widget that is the group leader of the iTool
user interface itself (the iTool window); the ID is stored in the GROUP_LEADER
property of the IDLitUI object. Having this widget ID allows you to retrieve screen
geometry information that allows you to calculate the position at which your user
interface should be displayed.

For example, the Scal eFact or user interface service uses the following code to
calculatethe X and Y offsets that will be used to position its own user interface over
the current i Tool:

Retrieve the widget |ID of top-Ievel base.
oU -> GetProperty, GROUP_LEADER = grouplLeader

I F (W DCET_I NFQ(groupl eader, /VALID)) THEN BEG N
geom = W DGET_| NFQ(gr oupLeader, / GEQVETRY)
xof f set = geom scr_xsi ze + geom xof fset - 80
yof fset = geom yoffset + (geomysize - 400)/2

ENDI F

The Ul service goes on to use the calculated xof f set and yof f set values when
positioning the IDL widgets that make up the interface displayed by the service.

iTool Developer’s Guide Creating a New Ul Service

228 Chapter 12: Creating a User Interface Service

Displaying the User Interface

If the user interface being displayed by the Ul serviceis simple, it may be convenient
to include the code for creating it directly in the definition of the user interface
service itself. For example, the following is the complete definition of the

Hour 3 assCur sor user interface service:

FUNCTI ON | DLi t Ul Hour G ass, oUl, oRequester
W DGET_CONTROL, / HOURGLASS
RETURN, 1

END

Asyou can see, no information about the IDLitUI object or the selected i Tool
component is used, and the displayed item itself is very simple.

In most cases, the user interface serviceis significantly more complex. In these cases
it is often useful to separate the routine that creates the service's user interface from
the code that displaysit. For example, the user interface for the ScaleFactor serviceis
displayed by the following statement:

result = | DLi twdScal eFact or (GROUP_LEADER = groupLeader, $
FACTOR = factor, XOFFSET = xoffset, YOFFSET = yoffset)
IF result EQ 1 THEN RETURN, O

This statement calls another function — IDLitwdScaleFactor — to actually display
the required user interface elements, supplying the information retrieved by other
portions of the user interface service routine. The IDLitwdScaleFactor function
returns the scale factor value selected by the user, or returns the value 1 (indicating no
scaling) if the value supplied by the user isinvalid. If the returned scale factor is 1
(either because the user entered 1 the value, or because the entered value was not a
valid value), no scaling will be performed, so the Ul service itsalf returnsthe failure
value (integer 0). The process of creating user interface elementsis discussed in
greater detail in “Creating Supporting User Interface Elements’ on page 229.

Setting Property Information

If the user has selected new values for any of the object’s properties, those properties
values must be changed on the object by a call to the SetProperty method. In our
example, if the user sets a new scale factor, the following statement updates the
property value, notifies the selected object that the value has changed, and inserts the
change into the undo-redo transaction buffer:

oRequester -> SetProperty, SCALE FACTOR = result
Note that not every user interface will modify properties of the selected object.

Creating a New Ul Service iTool Developer’s Guide

Chapter 12: Creating a User Interface Service 229

Example

The following example routine is the full definition of the Scal eFact or user
interface service described in the previous sections. It is presented here again for
compl eteness, so you can see the entire function at once.

FUNCTI ON | DLi t ui Scal eFactor, oU, oRequester

; Retrieve widget ID of top-Ilevel base.
oU -> GetProperty, GROUP_LEADER = grouplLeader

; Retrieve geonmetry information and cal cul ate of fsets.

| F (W DGET_I NFQ(gr oupl eader, /VALID)) THEN BEG N
screensi ze = GET_SCREEN_SI ZE(RESOLUTI ON = resol ution)
geom = W DGET_| NFQ(gr oupLeader, /GEQVETRY)
xof f set = geom scr_xsize + geom xof fset - 80
yof fset = geomyoffset + (geomysize - 400)/2

ENDI F

; Retrieve the current scale factor fromthe sel ected object.
oRequester -> GetProperty, SCALE FACTOR = factor

; Display the IDL widget interface allow ng the user to

; change the scale factor. The new scale factor is returned

; as the result of this function. If the specified value is

; not a valid scale factor, the integer 1 is returned in

; result.

result = | DLi twdScal eFactor(GROUP_LEADER = groupLeader, $
FACTOR = factor, XOFFSET = xoffset, YOFFSET = yoffset)

IF result EQ 1 THEN RETURN, O

; Set properties on the sel ected object.
oRequester -> SetProperty, SCALE FACTOR = result

: Return success.
RETURN, 1

END
Creating Supporting User Interface Elements

It is beyond the scope of this manual to provide general information on the creation of
user interfaces. For information on creating a user interface using the IDL widget
toolkit, see “ Creating Graphical User Interfacesin IDL” in the Building IDL
Applications manual. The following are some suggestions for creating IDL widget
interface code for iTool user interface services.

iTool Developer’s Guide Creating a New Ul Service

230 Chapter 12: Creating a User Interface Service

Place data collected by the user interface in the function’s return value

Create your user interface routine (the routine that creates the IDL widgets that make
up the user interface displayed by your Ul service) as afunction, returning the data
values collected by the interface in the function’s return value. If you are collecting
several values of different data types, return a structure variable containing the data.
The user interface and event-handling code should never change data or property
values within the iTool itself; al changes should be made viathe SetProperty
mechanism

Be sure to clean up heap variables when the user interface exits

If your user interface code creates pointer or object heap variables, be sure to destroy
them before the interface code exits. If extra“hanging” heap variables are left
undestroyed, IDL can potentially run out of resourcesif the interface is displayed
numerous times.

Use the GROUP_LEADER property if it is available

Pass the widget ID contained in the GROUP_LEADER property of the IDLitUI
object to your user interface code, and set the GROUP_L EADER keyword of the top-
level base widget to this value. Setting the widget group leader to the leader of the
iTool’s own widget hierarchy ensures that your user interface will be destroyed if the
iTool itself is destroyed.

Creating a New Ul Service iTool Developer’s Guide

Chapter 12: Creating a User Interface Service 231

Registering a Ul Service

Before a user interface service can be called from an iTool, the routine that
implements the service must be registered with the iTool system. Registering a Ul
service with the system links the file containing the actual IDL code that creates the
user interface elements with a simple string that names the Ul service. Since you use
the name string in code that calls the service, theiTool itself does not need to know
anything about the display environment in which it is running.

User interface services are registered either using the ITREGISTER procedure or via
acall to the RegisterUl Service method of the IDLitUI object. In most cases,
registration is accomplished viaa call to the ITREGISTER procedurein aniTool’s
launch routine. A Ul service can be registered at any time. In practice, you will
probably find it convenient to register Ul servicesused by aniTool in theiTool launch
routine, unless you know the service has already been registered. For alist of Ul
services that are pre-registered by the standard i Tools, see “ Predefined iTool Ul
Services’ on page 225.

Using ITREGISTER

Use the ITREGISTER routine to register a user interface service:
| TREG STER, 'U Service Nane', 'U _Service_Routine', /U _SERVICE

where Ul Service Name is a string you will useto call the user interface service, and
Ul_Service Routineisastring that specifies the name of the file that contains the
code for the user interface service.

Note
ThefileUl _Servi ce_Nanme__defi ne. pr o must exist somewherein IDL’s path
for the service definition to be successfully registered.

If agiven user interface service has already been registered when the ITREGISTER
routine is called, the service will not be registered a second time. The registration can
be performed at any timein an IDL session before you attempt to call the user
interface service.

See “I TREGISTER” in the IDL Reference Guide manual for details.

iTool Developer’s Guide Registering a Ul Service

232 Chapter 12: Creating a User Interface Service

Example

Suppose you have a Ul service definition file named my Ul Ser vi ce. pr o, located in
adirectory included in IDL's 'PATH system variable. Register this service with the
iTool system with the following command:

| TREG STER, 'My U Service', 'nyU Service', /U _SERVICE
The user interface service can now be invoked viathe DoUI Service method:

success = oTool -> DoU Service('My U Service', self)
where oTool isan object reference to the current iTool object.

Using the RegisterUIService Method

User interface services can also be registered by a call to the RegisterUl Service
method of the IDLitUI object:

self -> RegisterU Service, 'My U Service', 'mU Service'
Note
In most cases, you do not have areference to the IDLitUI object available, so this
method is not generally useful. We mention it here because the user interface
services registered for use by the standard i Tools are registered in this way, rather
than viathe ITREGISTER procedure.

Registering a Ul Service iTool Developer’s Guide

Chapter 12: Creating a User Interface Service 233

Executing a User Interface Service

Once you have defined and registered a user interface service and created any
supporting user interface code, you can call the service from any iTool operation
simply by calling the DoUI Service method of the IDLitTool class.

In most cases, the DoUl Service method is called from the DoExecuteUl method of an
IDLitOperation or an IDLitDataOperation. For example, the following routineis the
DoExecuteUl method of an operation that callsthe Scal eFact or user interface
service:

FUNCTI ON | DLi t opScal ef act or: : DoExecut eUl

oTool = self -> GetTool ()
IF (oTool EQ OBJ_NEW)) THEN RETURN, O

RETURN, oTool -> DoUl Service('Scal eFactor', self)

END

The GetTool method is part of the IDLitIMessaging class, which is a superclass of all
iTool operation classes; it returns an object reference to the current iTool. This
method callsthe Scal eFact or user interface service with the operation itself asthe
currently selected object, which allows the Ul service to modify the operation’s
properties. The second argument to the DoUI Service method is an object reference
that can be used by the service to modify the object’s properties.

iTool Developer’s Guide Executing a User Interface Service

234

Chapter 12: Creating a User Interface Service

Example: Changing a Property Value

This example creates a user interface service named SrvExample, which displays a
dialog that allows the user to change the NAME property of the currently selected
iTool component. The SrvExample user interface serviceis launched by an
IDLitDataOperation named opName.

This example isintended as a demonstration of the techniques used to create a user
interface service. In practice, you do not have to create a user interface to change the
NAME property; it can be changed more easily by atering the value in the
Visualization browser. It is conceivable, however, that you might want to provide an
interface that allows the user to change numerous properties simultaneously, with
some values being based on other user-supplied values. Similarly, you may wish to
display adialog that allows the user to set the properties of an operation every time
that operation is executed, without forcing the user to open the Operations browser.

Creating and using the SrvExampl e user interface service involves the following
steps:

e Creating the SrvExample service

e Creating the SrvExample interface

e Creating an operation that calls the service

* Registering the SrvExample service

* Registering the opName operation

¢ Invoking the opName operation

Creating the SrvExample service

The SrvExample user interface service consists of a single function named
SrvExample, stored in afile named sr vexanpl e. pr o that islocated in a directory
that isincluded in the IDL PATH system variable.

FUNCTI ON SrvExanpl e, oU, oRequester

Retrieve widget |ID of top-Ilevel base.
oU -> GetProperty, GROUP_LEADER = grouplLeader

Retrieve the original value of the nane property
; attribute fromthe selected item
oRequester -> GetProperty, NAME = ori gNane

Example: Changing a Property Value iTool Developer’s Guide

Chapter 12: Creating a User Interface Service 235

Di splay the widget U that allows the user to choose
a new nane.

newNanme = wdSrvExanpl e(NAMVE = ori gNanme, $
GROUP_LEADER = groupLeader)

Set the property val ue.
oRequester -> SetProperty, NAME = newNane

Ret urn success
RETURN, 1

END
Discussion

The function that implements this example service follows the pattern outlined in
“Creating the Ul Service Routing” on page 226. It uses the object reference to the
IDLitUI object to retrieve the widget ID of the top-level base of the iTool user
interface, and later uses the retrieved value to set the GROUP_LEADER keyword to
the user interface routine. It usesthe object reference to the “requester” object (in this
case, the iTool component that is selected in the current iTool) to retrieve the NAME
property. It then calls aroutine (wdSr vExanpl e) that displays a user interface
allowing the user to select anew value for the NAME property.

The string returned by the wdSr vExanpl e routineis used to set the NAME property
of the selected iTool component, and the routine returns 1 for success.

Creating the SrvExample interface

The interface presented by the SrvExample user interface service consists of a set of
routines that create an IDL widget interface. The creation routine and two simple
event-handling routines are stored in a file named wdsr vexanpl e. pr o that is
located in adirectory that isincluded in the IDL PATH system variable.

Widget Creation Function

The following function creates the widget interface that is displayed when the
SrvExample user interface service is called. The widget creation routine should be
thelast routinein the file.

FUNCTI ON wdSrvExanpl e, NAME = origNanme, TITLE = dialogTitle, $
GROUP_LEADER = groupLeader

Check to see if a title for the dialog was suppli ed.
If not, set a default title.

I F (N_ELEMENTS(di al ogTitle) EQ 0) THEN $
di al ogTi tl e=' Choose a Nan®'

iTool Developer’s Guide Example: Changing a Property Value

236 Chapter 12: Creating a User Interface Service

; Create the dial og.

wBase = W DCGET_BASE(/ COLUWN, TITLE = dialogTitle, $
GROUP_LEADER = groupLeader)

wlext = W DGET_TEXT(wBase, YSIZE = 3, $
VALUE=[' The original NAME is:', origNane, $

"Enter a new nane:'])

wEdit = W DCGET_TEXT(wBase, VALUE = ori gNanme, /EDI TABLE)

wSubBase = W DGET_BASE(WBASE, /ROWN

wOK = W DCET_BUTTON(wSubBase, VALUE=' OK', $
EVENT_PRO=" wdSr vExanpl e_ok')

wCancel = W DGET_BUTTON(wSubBase, VALUE=' Cancel', $
EVENT_PRO=' wdSr vExanpl e_cancel ")

; Create a state structure to hold inportant val ues.
state = { wWOK WK, $

wCancel : wCancel , $

WEdit:wEdit, $

pNare: PTR_NEW / ALLOCATE) }

; Store the original property name attribute in the
; state structure.
*state. pNane = ori gNane

; Store the state structure in the user value of the
; top-level wi dget base.
W DGET_CONTROL, wBase, SET_UWVALUE = state

; Realize the w dget hierarchy.
W DGET_CONTROL, wBase, /REALIZE

; Call XMANAGER
XMANAGER, ' wdSrvExanpl e', wBase

; After XMANAGER exits, retrieve the value of the name
; property attribute fromthe state structure.
result = (N_ELEMENTS(*state.pNane)) ? *state.pNane : origNane

; Free the pointer.
PTR_FREE, state. pNane

; Return the new value of the nanme property attribute.
RETURN, result

END

Example: Changing a Property Value iTool Developer’s Guide

Chapter 12: Creating a User Interface Service 237

Discussion

It is beyond the scope of this chapter to discuss the IDL widget programming
techniques used in this example. For more information on widget programming, see
the Building IDL Applications manual. Several points are worth nothing, however.

* Thewidget ID of the top-level base retrieved in the SrvExample routineis
passed to thisroutine, and used as the value of the GROUP_L EADER keyword
to WIDGET_BASE. Thisensuresthat if theiTool itself isminimized or closed
while the example dialog is displayed, it will be handled properly.

¢ Theoriginal value of the NAME property is passed to thisroutine, and is
stored in an IDL pointer variable within the state structure that is associated
with the dialog. This allows the event routine that actualy retrieves the value
entered by the user to communicate the new value back to the widget creation
routine, but it also meansthat the pointer must be freed before the routine exits.

Event-handling Routines

The following event-handling procedures handle widget events generated by the
widget interface that is displayed when the SrvExample user interface serviceis
caled.

PRO wdSr vExanpl e_ok, event
Cet the stashed state structure fromthe user val ue
of the top-Ievel base w dget.
W DGET_CONTROL, event.top, GET_UVALUE = state

CGet the value fromthe editable text field.
W DGET_CONTROL, state.wEdit, CGET_VALUE = val ue

Store the text value in a pointer so we can access
it fromthe nain routine
*state. pNane = val ue

Destroy the dial og.
W DGET_CONTROL, event.top, /DESTROY

END

PRO wdSr vExanpl e_cancel , event

Not hi ng to do, just destroy the dial og.
W DGET_CONTROL, event.top, /DESTROY

END

iTool Developer’s Guide Example: Changing a Property Value

238 Chapter 12: Creating a User Interface Service

Discussion

When the user clicks the OK button, the current value of the editable text widget is
placed in the pointer stored in the state structure’s pNane field.

Creating an operation that calls the service

In order to launch the SrvExample user interface service, the user must be able to
select an operation that calls the DoUl Service method. This example uses an
IDLitDataOperation named opName, which ssimply retrieves the list of currently
selected items and calls the SrvExample user interface service. The code for this
operation is stored in afile named opnarme__def i ne. pro that islocated in a
directory that isincluded in the IDL PATH system variable.

FUNCTI ON opNane: :Init, _EXTRA = _extra

; Initialize the operation, setting the "show U " property.
; Note that this operation will operation on all iTool
conponent types.
success = self -> IDLitDataOperation::lnit($
NAME=" Renane Conponent", $
DESCRI PTI ON="Rename an i Tool conponent”, $
/ SHOW EXECUTI ON_Ul, TYPES='")

RETURN, success
END
FUNCTI ON opNane: : DoExecut eUl
CGet a reference to the current i Tool and
; make sure it is valid.
oTool = self -> GetTool ()
IF (oTool eq OBJ_NEW)) THEN RETURN, O

;. Get the list of selected itens.
sel ltem = oTool -> GetSel ectedltens()

; Call the U service on the first itemin the |ist
;. of selected itens.
RETURN, oTool -> DoU Service('Exanple Service', sellten{0])

END

Example: Changing a Property Value iTool Developer’s Guide

Chapter 12: Creating a User Interface Service 239

PRO opNane__defi ne

struct = {opNanme, $
inherits |DLitDataQperation $
}

END
Discussion

Only two methods are required: Init and DoExecuteUl. Since this operation is based
on the IDLitDataOperation class, al interaction with the iTools undo/redo system is
automated.

Even though all of the items that are currently selected in the iTool are retrieved by
the GetSel ecteditems method, only the first item is passed to the SrvExample user
interface service for processing. Handling multiple selected items would require a
more complicated user interface.

The process of defining an IDLitDataOperation is discussed in detail in Chapter 7,
“Creating an Operation”.
Registering the SrvExample service

In order for the SrvExample user interface service to be available, it must be
registered with the current iTool. The following line in the iTool’s launch routine
allows the service to be called with the name “ Example Service”:

| TREG STER, ' Example Service', 'srvExanple', /U _SERVICE
Registering the opName operation

To use the opName operation within aniTool, the operation must be registered in the
iTool’s definition. The following statement registers the operation with the name
“Property Name” and placesit in the Operations menu of theiTool.

self -> RegisterQperation, 'Property Nane', 'opNane', $
| DENTI FI ER = ' Qper ati ons/ PropertyNaneg'

Invoking the opName operation
To use the SrvExample service, the user would launch an i Tool for which the opName

operation is registered, select an iTool component in the window, and select
Property Name from the Oper ations menu.

iTool Developer’s Guide Example: Changing a Property Value

240 Chapter 12: Creating a User Interface Service

Example: Changing a Property Value iTool Developer’s Guide

Chapter 13:

Creating a User
Interface Panel

This chapter describes the process of creating a user interface panel.

Overviewcoviiiiinnannnn. 242 RegisteringaUl Panel 250
Creating aUl Panel Interface 243 Example: A SimpleUl Pandl 252
Creating Callback Routines 248

iTool Developer’s Guide 241

242

Chapter 13: Creating a User Interface Panel

Overview

A Ul Panel isacollection of user interface elements displayed in one or more tabs
located on the right, left, or bottom edge of an iTool window. The Ul panel interface
makes it easy to attach a set of controls chosen by the iTool developer to the standard
iTool interface.

Note
Intheinitial iToolsrelease, only one user interface styleis supplied: the IDL widget
interface toolkit. As aresult, Ul panels consist of widgets from the IDL graphical
user interface toolkit, displayed in atab widget. AstheiTools framework continues
to grow, additional user interface styles may be created either by RSI or by third-
party developers.

Controlson a Ul panel exchange information with the iTool itself via one or more
callback routines. These routines allow the iTool to modify the controlsin the Ul
panel as the user selects different visualization components or otherwise changes the
contents of the visualization.

Creating and Using a Ul Panel

Overview

To add a Ul panel to the iTool interface, you will do the following:

e Createan IDL procedure that creates the user interface elements that comprise
the panel. See “Creating a Ul Panel Interface” on page 243 for details.

¢ Create an one or more event-handling routines to handle events generated by
the user interface elementsin the panel. See“ Creating aUl Panel Interface” on
page 243 for details.

e Create one or more callback routines to control the display of the items on the
panel as the contents of the iTool window change. See “ Creating Callback
Routines’ on page 248 for details.

e CreateaniTool with the TY PES property set to the appropriate iTool type and
register the Ul panel with the iTool that will display it. See “ Registering a Ul
Panel” on page 250 for details.w

iTool Developer’s Guide

Chapter 13: Creating a User Interface Panel 243

Creating a Ul Panel Interface

It is beyond the scope of this manual to provide general information on the creation of
user interfaces. For information on creating a user interface using the IDL widget
toolkit, see “ Creating Graphical User Interfacesin IDL” in the Building IDL
Applications manual. Keep the following points in mind when creating IDL widget
interface code for iTool user interface panels.

Panel Creation Routines

A user interface panel creation routine is similar to the widget creation routine that
creates a standal one widget application, but with the following important differences:

Signature

The routine signature of a user interface panel looks like this:
PRO Panel Name, wPanel, oUl

where PanelName is the name of the routine, wPanel is an input argument that

contains the widget ID of the panel widget associated with this panel, and oUl isan
input argument that contains an object referenceto the IDLitUI object associated with
the iTool that includes the user interface panel.

Event Loop and Widget Management

Standal one widget applications must arrange for the management of their widgets
and the creation of an event loop; these details are usually handled by the
XMANAGER or WIDGET_EVENT routines. A user interface panel doesnot need to
cal XMANAGER or WIDGET_EVENT; widget management is handled by the main
iTool interface code. A user interface panel simply attachesitself to the bulk of the
iTool interface.

About the Panel Widget

Intheinitial release of the iTools, user interface panels are contained in an IDL tab
widget displayed on the right side of the iTool window. We will refer to this tab
widget as the panel widget in this documentation, since al user interface elementsin
a Ul pand are contained in this widget.

The panel widget itself is created automatically when a user interface panel is
registered with aniTool, and itswidget ID is passed to the panel creation routine
along with areference to theiTool user interface object.

iTool Developer’s Guide Creating a Ul Panel Interface

244 Chapter 13: Creating a User Interface Panel

Use the widget 1D of the panel widget to set the title of the tab that appears at the top
of the panel. For example the following lines might occur at the beginning of a
routine that builds a user interface panel:

PRO Exanpl ePanel, wPanel, oU

; Set the title used on the panel's tab.
W DGET_CONTROL, wPanel, BASE_SET_TI TLE=' Exanpl e Panel"

. more panel code.

ThewPanel argument contains the widget ID of the panel widget, which was
assigned when the iTool interface was built. The oUl argument contains an object
reference to the IDLitUI object associated with the current iTool. The call to the
WIDGET_CONTROL procedure sets thetitle of the tab to be “ Example Panel.”

You may also find it useful to specify a single event-handling routine for al events
generated by the panel widget. You can specify the name of this routine with a
statement similar to the following:

W DCGET_CONTROL, wPanel, EVENT_PRO = ' Exanpl ePanel _event'

where Exanpl ePanel _event isreplaced by the name of the event-handling routine
you create for your panel. Of course, you can also specify event-handling routines for
specific widgets within the panel using the EVENT_PRO and EVENT_FUNC
keywords to the widget creation routines.

Registering the Panel with the User Interface Object

To ensure that notifications from theiTool itself are passed to the user interface panel
as heeded, the panel creation routine must register the panel widget with the iTool
user interface object. This registration step allows you to specify the name of the
callback routine that will be called when anotification is generated by theiTool itself.

To register a user interface panel, use the RegisterWidget method of the IDLitUI
object:

id = oU -> RegisterWdget (wPanel, 'Panel', 'Ex_callback')

where oUl isan object reference to the IDLitUI object and wPanel isthe widget ID
of the panel widget; both are passed in as argumentsto the panel creation routine. The
second argument to the RegisterWidget method (' Panel ' , in this example) isthe
human-readabl e name of the Ul panel. Thethird argument (' Ex_cal | back' , inthis
example) isthe name of the panel’s callback routine. See “IDLitUI::RegisterWidget”
in the IDL Reference Guide manual for details. Callback routines are discussed in
detail in “Creating Callback Routines’ on page 248.

Creating a Ul Panel Interface iTool Developer’s Guide

Chapter 13: Creating a User Interface Panel 245

Adding Observers

For notification messages to be passed to the correct callback routine, an
OnNotifyObserver must be established by calling the AddOnNotifyObserver method
of the IDLitUI abject. The AddOnNotifyObserver method takes as its arguments the
ID created by the call to the RegisterWidget method (as discussed in the previous
section) and the component object identifier of theiTool component to observe. Once
the observer is created, each time the specified i Tool component generates a message
(that is, when the component itself calls the DoOnNotify method), the registered
widget callback routineis called with the message as one of its arguments. The call to
the AddOnNotifyObserver method looks like:

oU -> AddOnNoti fyCbserver, id, Component

where id is an identifier created by a call to the RegisterWidget method, and
Component is the component object identifier of the iTool component being
observed. See“IDLitUl::AddOnNotifyObserver” in the IDL Reference Guide manual
for additional details.

The component argument to the AddOnNotifyObserver method can be any string
value. For example, any time the selection within an iTool window changes, the
DoOnNotify method is called with itsfirst parameter (idOriginator) set to the string
value' Vi sual i zat i on' rather than to the object identifier of acomponent. An
observer whose Component argument is set to the string ' Vi sual i zat i on' will be
notified each time the selection changes in the iTool window. For example, the
following statement specifies that the panel widget (as registered viathe
RegisterWidget method) will receive notifications whenever a visualization changes
in the iTool window.

oU -> AddOnNoti fyQoserver, id, 'Visualization'

Here, i d istheidentifier created in the previous section. The second argument
(" Visualization') specifies that messages will be generated whenever a
visualization is modified.

“Example: A Simple Ul Panel” on page 252 provides examples of observers of both
types. See“iTool Messaging System” on page 25 for background information on
observers and messages.

iTool Developer’s Guide Creating a Ul Panel Interface

246 Chapter 13: Creating a User Interface Panel

Create the Widget Hierarchy

The widget hierarchy of auser interface panel 1ooks like the following:

Panel w dget

- Base wi dget

- other wi dgets

Since the widget 1D of the panel widget is supplied as an argument to the panel
creation routine, all that isleft isto create a base widget with the panel widget asits
parent, and to populate the base widgets with other widgets as necessary.

Passing State Information

State information can be passed between widget creation routines and widget event
handling routinesin several different ways. The method used most often in iTool user
interface panelsisto create a state structure in the panel creation routine, store the
appropriate valuesin this structure, and assign the structure to the widget user value
of one of the widgetsin the panel widget hierarchy. For amore detailed discussion of
this technique, see “Managing Application State” in Chapter 26 of the Building IDL
Applications manual.

In addition to widget | Ds and other state information from your widget interface, you
may find it useful to store object references to the iTool object and to the IDLitUI
object associated with the iTool object in the state structure. Having these object
references available in your event handler and callback routines allows you to take
advantage of methods available in the iTool and user interface objects.

Create Event Handlers

Like other widget applications, iTool user interface panels use one or more event
handling routines to perform actions based on the user’s interaction with the widgets
in the interface. As with generalized widget applications, you can write event
handling routines for a user interface panel in numerous ways; see “Widget Event
Processing” in Chapter 26 of the Building IDL Applications manual for an in-depth
discussion of widget event handling in general.

Thefollowing suggestions apply specifically to event handlersfor i Tool user interface
panels:

Creating a Ul Panel Interface iTool Developer’s Guide

Chapter 13: Creating a User Interface Panel 247

Use the GetSelectedltems Method

Often, you will want to apply an operation to one or moreitemsin theiTool window
when the user selects an element on the user interface panel. Use the
GetSelecteditems method of the iTool object to retrieve references to theiTool
component objects that are selected.

The following statement retrieves an array of object referencesto al of the currently
selected itemsin theiTool:

oTargets = state.oTool -> CetSel ectedltenms(COUNT = nTar Q)

Note
Note that this example assumes that a reference to the iTool object is stored in the
oTool field of the st at e structure variable. The COUNT keyword to the
GetSelectedltems method returns the number of items selected.

Use the DoAction Method

In many cases, the user’s interaction with the user interface panel will instruct the
iTool to apply an iTool operation to the selected item. Where possible, use the
DoAction method of the operation to perform thistask. Calling the DoAction method
ensures that the changes caused by the operation are properly inserted into the i Tool
undo/redo system.

For example, the following statement:
success = state.oU -> DoAction(' Qperations/Rotate/RotatelLeft')

calls the DoAction method on the IDLitUI object associated with the current i Tool,
invoking the operation registered with the system with the operation identifier
' Operations/Rotate/ RotatelLeft'.

Redraw the iTool Window

Call the RefreshCurrentWindow method of the i Tool object to force theiTool’s
window to update, displaying any changes that took place as the result of the
operations executed in your event handling routine:

state.oTool -> RefreshCurrent Wndow
Note

Note that this example assumes that a reference to the iTool object is stored in the
oTool field of the st at e structure variable.

iTool Developer’s Guide Creating a Ul Panel Interface

248 Chapter 13: Creating a User Interface Panel

Creating Callback Routines

User interface panel callback routines are executed when an iTool component for
which the panel has created an observer generates a notification message. The
callback routine then uses the value of the notification message to determine what
action to take. Observers are created as described in “Adding Observers’ on

page 245.

Callback Routine Signature

A user interface panel widget callback routine has the following signature:
PRO Panel Nane_cal | back, wPanel, 1dOriginator, |dMessage, Val ue
where:
« PanelName_callback is the name of the callback routine,

e wPanel isthewidget ID of the panel widget (see “About the Panel Widget” on
page 243),

e IldOriginator is astring identifying the source of the message (usually the
object identifier of aniTool component object, but it can be any string value),

¢ ldMessageisastring that uniquely identifies the message being sent, and

¢ \Valueisavaluethat is associated with the message being sent.
See “iTool Messaging System” on page 25 for more information on the |dMessage
and Value arguments.

Registration of Callback Routines

Callback routines are registered along with the user interface panel itself, in the call
to the RegisterWidget method of the IDLitUI object. See “ Registering the Panel with
the User Interface Object” on page 244 for details.

Retrieving Widget State Information
The wPanel argument to the callback routine contains the widget 1D of the panel

widget. Thiswidget ID provides away for the callback routine to retrieve state
information about the widgets that make up the panel.

Creating Callback Routines iTool Developer’s Guide

Chapter 13: Creating a User Interface Panel 249

For example, if you have saved a state structure containing widget information in the
user value of the first child widget of the panel widget, code similar to the following
would alow you to retrieve that state structure:

Make sure we have a valid w dget ID.
I F ~ WDGET_I NFQ(wPanel , /VALID) THEN RETURN

Retrieve the widget ID of the first child w dget of

; the U panel.
wChi | d = W DGET_I NFQ(wPanel , / CHI LD)

Retrieve the state structure fromthe user val ue of

; the first child wi dget.

W DGET_CONTROL, wChild, GET_UWVALUE = state
This technique is used in the example user interface panel described in “Example: A
Simple Ul Panel” on page 252.

iTool Developer’s Guide Creating Callback Routines

250 Chapter 13: Creating a User Interface Panel

Registering a Ul Panel

User interface panels are registered with the iTool system using the ITREGISTER
procedure. Once a Ul panel has been registered, it will be displayed for any iTool
whose TY PE property matches the string specified viathe TY PES keyword when
registering the panel. Similarly, if an iTool displays avisualization whose TY PE
property matches the string specified viathe TY PES keyword when registering the
panel, the panel will be displayed for that iTool.

Registering the Panel in the iTool Launch Routine

In most cases, you will register your user interface panel in aniTool’s launch routine,
with a statement like:

| TREG STER, panel Nane, panel Code, TYPES = panel Type, /U _PANEL

where panelName is a string containing the human-readable name of your user
interface panel, panelCode is a string containing the name of the IDL procedure that
creates the user interface panel, and panel Type is a string that identifies the type of
iTool or visualization for which the panel should be displayed. The Ul_PANEL
keyword must be present in order to register a user interface panel using the
ITREGISTER procedure.

See “I TREGISTER” in the IDL Reference Guide manual for additional details.
About the TYPE property

To display a user interface panel for agiven iTool, you will not only need to register
the panel in that iTool’s launch routine, but also specify a matching type when
initializing the iTool itself. TheiTool system will display aregistered panel in an
iTool whose TY PE property contains a string that matches the string specified viathe
TY PES keyword when registering the panel.

To set the TY PE property of aniTool use a statement like thisin theiTool’s Init
method:

self -> IDLitTool base::Init(_EXTRA = _extra, TYPE = panel Type)

where panel Type is a string that matches the string used as the value of the TYPES
keyword to ITREGISTER.

Similarly, theiTool system will display aregistered panel when aniTool displays a
visualization whose TY PE property contains a string that matches the string specified
viathe TY PES keyword when registering the panel.

Registering a Ul Panel iTool Developer’s Guide

Chapter 13: Creating a User Interface Panel 251

To set the TY PE property of avisualization, use a statement like thisin the
visualization’s Init method:

self -> IDLitVisualization::Init(_EXTRA = _extra, TYPE = panel Type)

where panel Type is a string that matches the string used as the value of the TY PES
keyword to ITREGISTER.

Changing the Panel Location

You can control which side of the iTool the user interface panel is displayed on by
specifying the PANEL_L OCATION keyword to the IDLITSYS CREATETOOL
function. The keyword can be set to any of the following values;

¢ 0= position the panel above the iTool window

e 1 =position the panel below the iTool window

e 2 =position the panel to the left of the iTool window.

e 3 =position the panel to the right of theiTool window (thisis the default).

Note
If your iTool creation routine uses the keyword inheritance mechanism, and the

_EXTRA keyword isincluded in the creation routine's call to

IDLITSYS CREATETOOL, then the user will be able to specify the

PANEL _LOCATION keyword when launching the iTool from the IDL command
line.

iTool Developer’s Guide Registering a Ul Panel

252 Chapter 13: Creating a User Interface Panel

Example: A Simple Ul Panel

The following example creates a simple user interface panel consisting of two
buttons: Rotate and Hide/Show. The Rotate button rotates the selected i Tool
component 90 degrees, if possible. The Hide/Show button toggles the value of the
HIDE property of the selected object.

&1 IDL itTool [Untitled*] [_ (O] x|
File Edit Insert Operations Window Help

Dls|a|&| || s [mlef fo:=] [x o] AlNa|o|s]e]

Example Panel |

] Choose an Actior:

Fotate |tem |
Show/Hide [tem |

Figure 13-1: The example panel.

Note
This example isintended to demonstrate the concepts involved in creating a user
interface panel. For examples of more useful panels, see thefiles
idlitingmenu.proandidlitvol menu. pro, which create the user interface
panels for the IMAGE and IVOLUME iTools, respectively. Both files are located
inthel i b/itool s/ui _wi dgets subdirectory of the IDL installation directory.

To display a user interface panel named ExamplePanel, this example creates the
following items:

¢ Panel Creation Routine

¢ Panel Event Handler Routine
» Panel Callback Routine

e Panel Type Specification

Panel Creation Routine

The user interface panel creation routine does the work of displaying the IDL widgets
that make up the Ul panel display.

Example: A Simple Ul Panel iTool Developer’s Guide

Chapter 13: Creating a User Interface Panel 253

PRO Exanpl ePanel, wPanel, oU

; Set the title used on the panel's tab.
W DGET_CONTROL, wPanel, BASE SET TI TLE = ' Exanpl e Panel'

; Specify the event handl er
W DGET_CONTROL, wPanel, EVENT_PRO = "Exanpl ePanel _event"

; Register the panel with the user interface object.

strCbserverldentifier = oU -> RegisterWdget(wPanel, "Panel", $
' Exanpl ePanel _cal | back')

; Register to receive selection events on visualizations.

oU -> AddOnNotifyCbserver, strCbserverldentifier, $
"Visualization'

; Retrieve a reference to the current i Tool.
oTool = oU -> GetTool ()

; Create a base widget to hold the contents of the panel.
wBase = W DCGET_BASE(wPanel , /COLUWN, SPACE = 5, /ALIGN_LEFT)

; Create panel contents.
wLabel = W DGET_LABEL(wBase, VALUE = "Choose an Action:", $
/ ALl GN_LEFT)

; Get the Operation ID of the rotate operation. If the operation
. exists, create the "Rotate Itenf button and nonitor whether

; the operation is available for the selected item

opl D = ' Operations/ Operati ons/ Rot at e/ Rot at eLeft"’

oRotate = oTool -> CetByldentifier(oplD)

IF (OBJ_VALI D(oRotate)) THEN BEG N

idRotate = oRotate -> GetFullldentifier()

WRot at e = W DGET_BUTTON(wBase, VALUE = "Rotate Iten, $

UVALUE=" ROTATE")

; Monitor for availablity of the Rotate operation.

oU -> AddOnNotifyQnserver, strCbserverldentifier, idRotate
ENDI F ELSE $
i dRotate = 0

wH de = W DGET_BUTTON(wBase, VALUE = "Show Hide Iten, $
UVALUE = "HI DE")

; Pack up the state structure and store in first child.
state = {oTool : 0Tool, $

oU:oU, $

idRotate : idRotate, $

wPanel : wPanel , $

wBase: wBase, $

iTool Developer’s Guide Example: A Simple Ul Panel

254

Chapter 13: Creating a User Interface Panel

wRot at e: wRot ate, $
wH de: wHi de $
}
WChi | d = W DGET_I NFO{ wPanel , / CHI LD)

IF wChild NE O THEN $
W DGET_CONTROL, wChild, SET_UVALUE = state, /NO COPY

END

Discussion

It is beyond the scope of this chapter to describe the IDL widget concepts employed
in the ExamplePanel example; the commentsin the code that creates the user
interface panel describe most of the features. The following points are worth noting,
however:

The panel creation routine accepts two arguments: the widget 1D of the panel
widget (stored in the variable wPanel , in this example), and an object
referenceto the IDLitUI object associated with theiTool (stored in the variable
oUul).

The example uses the EVENT_PRO keyword to the WIDGET_CONTROL
procedure to establish an event-handling routine, Exanpl ePanel _event .
This event-handling routine is described in “Panel Event Handler Routine” on
page 255.

The example registers a single callback routine, Exanpl ePanel _cal | back,
using the RegisterWidget method of the IDLitUI class. The callback routineis
described in “Panel Callback Routine” on page 256.

The example adds an OnNotifyObserver for the for the Vi sual i zat i on
component described in “Adding Observers’ on page 245.

The example uses the GetTool method of the IDLitUI object to retrieve an
object reference to the i Tool with which the panel is associated. This reference
is later used to retrieve areference to the IDLitOperation object that performs
theRot at e Left operation, placing it in the variable oRot at e.

If theRot at e Left operation isavailableto theiTool, the example placesthe
Rot at e button on the user interface panel. It also establishes an observer to
watch for changesin the availability of the Rot at e Left operation, which
will change based on the item selected. The callback routine will uses the
messages received by this observer to sensitize and desensitize the Rot at e
button as necessary.

Example: A Simple Ul Panel iTool Developer’s Guide

Chapter 13: Creating a User Interface Panel 255

« The example packages important information in a state structure, and assigns
this structure to the user value of the first child widget of the panel widget. The
event-handling and callback routines will retrieve this state structure and use
the information contained therein.

Panel Event Handler Routine

The event-handler routine receives widget events generated by the widgets that make
up the user interface panel, and acts accordingly.

PRO Exanpl ePanel _event, event

; Retrieve the widget ID of the first child w dget of
; the U panel.
wChild = WDGET_I NFQ(event . handl er, /CH LD)

Retrieve the state structure fromthe user val ue of
; the first child wi dget.
W DGET_CONTROL, wChild, GET_UWVALUE = state

; Retrieve the user value of the wi dget that generated
;. the event.
W DGET_CONTROL, event.id, GET_UVALUE = uval ue

;7 Now do the work for each panel item
SW TCH STRUPCASE(uval ue) OF
' ROTATE' : BEGA N
; Apply the Rotate Left operation to the selected item
success = state.oU -> DoAction(state.idRotate)
RETURN
END
"H DE : BEG N
H de the selected item

oTargets = state.oTool -> CetSel ectedltens(count = nTarg)
IF nTarg GT 0 THEN BEG N

; If there are selected itenms, use only the |ast

;. sel ection.

oTarget = oTargets[O0]

; Get the iTool identifier of the selected item

name = oTarget -> GetFullldentifier()

; Retrive the setting of the H DE property.

oTarget -> GetProperty, H DE = hide
Change the value of the HI DE property fromO to 1
or from1l to 0. Use the DoSet Property and
Conmi t Actions nmethod to ensure that the change
is entered into the undo/redo transaction buffer.
void = state.oTool -> DoSetProperty(nane, "H DE', $

iTool Developer’s Guide Example: A Simple Ul Panel

256 Chapter 13: Creating a User Interface Panel

((hi de+l) MID 2))
state.oTool -> ConmitActions
ENDI F
BREAK
END
ELSE:
ENDSW TCH

Refresh the i Tool w ndow.
state.oTool -> RefreshCurrent Wndow

END
Discussion

It is beyond the scope of this chapter to describe the IDL widget concepts employed
in the ExamplePanel event handler; the comments in the code describe most of the
features. The following points are worth noting, however:

< If the event received by the event handler routine is generated by the Rot at e
button, the example calls the DoAction method of the IDLitUI object, with the
identifier of the Rot at e Left operation asits argument.

« |f the event received by the event handler routine is generated by the
Hi de/ Show button, the example does the following:

¢ Usethereferenceto theiTool object stored in the state structure to retrieve
the list of selected items using the GetSel ectedltems method.

* Retrieve the object identifier of the last item selected.
* Retrievethe value of the HIDE property of the selected item.

e Usethe DoSetProperty method of the IDLitTool object to toggle the value
of the HIDE property for the selected item.

» Commit the property change in the undo/redo transaction buffer using the
CommitActions method of the IDLitTool object.

e After theiTool display has been changed, call the RefreshCurrentWindow
method of the IDLitTool object to redraw the iTool window.

Panel Callback Routine
The user interface panel callback routine is called whenever a component for which

an OnNotifyObserver has been registered generates a message. It parses the message
received and takes action as necessary.

Example: A Simple Ul Panel iTool Developer’s Guide

Chapter 13: Creating a User Interface Panel 257

PRO Exanpl ePanel _cal | back, wPanel, strlD, messageln, conponent

; Make sure we have a valid w dget |ID.
| F ~ WDGET_I NFQ(wPanel , /VALI D) THEN RETURN

; Retrieve the widget ID of the first child w dget of
; the U panel.
wChi |l d = WDGET_I NFQ(wPanel , /CHI LD)

; Retrieve the state structure fromthe user val ue of
; the first child wi dget.
W DGET_CONTROL, wChild, GET_UWVALUE = state

; Process as necessary, depending on the nessage received.
SW TCH STRUPCASE(nessagel n) OF

; This section handl es nessages generated when the rotate
; operation becomes avail abl e or unavail able, and sensitizes
; or desensitizes the "Rotate" button accordingly.
' SENSI Tl VE' :
"UNSENSI TI VE' : BEG N

W DGET_CONTROL, state.wRotate, $

SENSI TI VE = (nessageln EQ ' SENSI Tl VE')

BREAK

END

; This section handl es nessages generated when the
; itemselected in the i Tool wi ndow changes and changes
; the sensitivity of the "Hi de/ Show' button accordingly.
' SELECTI ONCHANGED : BEG N

;. Retrieve the itemthat was selected | ast.

0Sel = state.oTool -> GetSelectedltens()

oSel = 0Sel [0]

; If the last itemselected is not a visualization,

; desensitize the "H de/ Show' button.

IF (~OBJ_I SA(0Sel, 'IDLITVISUALIZATION)) THEN $
W DGET_CONTROL, state.wH de, SENSITIVE = 0 $
ELSE BEG N

; If the selected object is a visualization, sensitize
; the "Hide/ Show' button.
W DGET_CONTROL, state.wH de, SENSITIVE = 1

ENDEL SE
BREAK

END

ELSE:

ENDSW TCH

END

iTool Developer’s Guide Example: A Simple Ul Panel

258

Chapter 13: Creating a User Interface Panel

Discussion
The example panel’s callback routine performs the following tasks:

e Usesthewidget ID provided in the wPanel argument to retrieve the widget
state structure stored in the first child widget of the panel widget.

« If thevalue of the mnessagel n argument is either SENSI TI VE or
UNSENSI TI VE, change the sensitivity of the Rot at e button (stored in the
wRot at e field of the widget state structure) as necessary.

e |f thevalue of the nessagel n argument is SELECTI ONCHANGED, perform the
following tasks:

¢ Usethereferenceto theiTool object stored in theoTool field of the state
structure to retrieve an object reference to the last selected component.

» If the selected component is not a visualization, desensitize the
Hi de/ Show button.

e |f the selected component is a visualization, sensitize the Hi de/ Show
button.

Panel Type Specification

In order to display the ExamplePanel user interface panel along with an iTool, the
following two things must happen:

1. The Ul panel must be registered, using the ITREGISTER procedure.
2. A tool with the appropriate TY PE must be created.

For the purposes of this example, suppose we have an iTool named my Tool , with a
launch routine named my Tool . pr o, and an iTool object definition routine named
myTool __defi ne. pro.

InthemmyTool . pr o file, we included the following statement:

| TREG STER, ' Exanpl e Panel', 'ExanplePanel', TYPE = 'EXAMPLE , $
/ U _PANEL

InthenyTool __defi ne. pro file, we include the string EXAMPLE in the TY PE
property specified in the Init method:

FUNCTI ON nyTool : : Init, _REF_EXTRA = _EXTRA
IF (self -> IDLitTool base::Init(_EXTRA = extra, $

TYPE = ' EXAMPLE') EQO0) $
THEN RETURN, O

Example: A Simple Ul Panel iTool Developer’s Guide

Chapter 13: Creating a User Interface Panel 259

Calling the launch routine myTool at the IDL Command Line creates anew iTool and
displays the ExamplePanel panel on the right side of the iTool window.

iTool Developer’s Guide Example: A Simple Ul Panel

260 Chapter 13: Creating a User Interface Panel

Example: A Simple Ul Panel iTool Developer’s Guide

Index

Symbols B
_EXTRA keyword, 81 base class
file reader, 168
A file writer, 192
iTool, 70
Aad method, 61 operation, 128, 141
AddByldentifier method, 33 visualization, 97
adding data, 33 bitmap location, 28
AddOnNotifyObserver method, 27, 213, 245 boolean properties, 51
AGGREGATE keyword, 61 BOOLEAN property datatype, 51
Aggregate method, 61
aggregation of properties, 50, 61 C
architecture of iTools, 17
attributes, 50 callback routines
automatic data type matching, 43 creating, 248

for user interface, panel, 242
observers, 245

iTool Developer’s Guide 261

262

callback routines (continued)
registering, 248
Cleanup method
data operation, 130
filereader, 170
file writer, 194
generalized operation, 142
visualization, 102
color properties, 51
COLOR property datatype, 51
command line arguments, 80
component framework See framework
component registration, 22
components, 75
container
data, 36, 37
parameter, 37
creating
file readers, 162, 166
file writers, 186
iTools, 67
operations, 120
user interface services, 226
visualization types, 90, 95

D

data

container, 36

management, 31

manager
adding data, 33
described, 33
removing data, 33

objects
described, 36
IDLitDatalDLArray2D, 38
IDLitDatalDLArray3D, 38
IDLitDatalDLImage, 39
IDLitDatal DL ImagePixels, 39
IDLitDatal DL Palette, 39
IDLitDatal DL Polyvertex, 39

Index

data (continued)
objects
IDLitDatal DL Vector, 40
removing, 33
types
IDLARRAY 2D, 35
IDLARRAY3D, 35
IDLIMAGE, 35
IDLIMAGEPIXELS, 35
IDLOPACITY_TABLE, 35
IDLPALETTE, 35
IDLPOLYVERTEX, 35
IDLVECTOR, 35
IDLVERTEX, 35
iTool, 32
matching, 43
parameter, 32, 41
property, 49
property See property datatypes
update mechanism, 45
data-centric operations, 125
DESCRIPTION property attribute, 59
DoAction method
generalized operation, 143
user interface element, 213
documented classes, 11
DoExecuteUl method, 132

E

enumerated list properties, 53
ENUMLIST
property attribute, 59
property datatype, 53
error handling, 82
ErrorM essage method, 221
examples
data operation, 156
filereader, 179
file writer, 203
simpleiTool, 85
simple user interface panel, 252

iTool Developer’s Guide

examples (continued)

user interface service, 234

visualization type, 113
Execute method

data operation, 131

described, 123
EXPENSIVE_OPERATION property, 123,

153

F

filereaders
creating, 162, 166
described, 162
example, 179
IDLitReadASCII, 163
IDLitReadBinary, 163
IDLitReadBMP, 163
IDLitReadDICOM, 163
IDLitReadISV, 164
IDLitReadJPEG, 164
IDLitReadPICT, 164
IDLitReadPNG, 164
IDLitReadTIFF, 164
IDLitReadWAYV, 165
predefined, 163
preferences, 64
registering, 72, 177
standard base class, 168
unregistering, 178

file writers
creating, 186
described, 186
example, 203
IDLitWriteASCII, 187
IDLitWriteBinary, 187
IDLitWriteBMP, 187
IDLitWritel SV, 188
IDLitWriteJPEG, 188
IDLitWritePICT, 188
IDLitWritePNG, 188
IDLitWriteTiff, 189

iTool Developer’s Guide

263

file writers (continued)

predefined, 187

preferences, 64

registering, 72, 201

standard base class, 192

unregistering, 202
FLOAT property datatype, 51
floating-point integer properties, 51
framework

advantages, 9

architecture, 17

code base, 11

documented vs. undocumented classes, 11

overview

skillsrequired to use, 13

G

GetData method to file reader, 174
GetProperty method
and property identifiers, 57
data operation, 133
file reader, 171
file writer, 195
generalized operation, 147
visualization, 103
GetTool method, 212

H

help, 29
HIDE property attribute, 59
hierarchy, 21

icon (bitmap) location, 28
ICON property, 154, 201
IDENTIFIER

keyword, 80

property, 154

Index

264

identifiers

property, 50, 57

strings See object identifiers
IDL widgets, 18, 210, 246
IDLARRAY 2D datatype, 35
IDLARRAY 3D datatype, 35
IDLgr* graphics objects, 99
IDLIMAGE datatype, 35
IDLIMAGEPIXELS data type, 35
IDLit* visualization objects, 99
IDLitData object, 36
IDLitData objects, 33
IDLitDataContainer object, 36
IDLitDataContainer objects, 33
IDLitDatal DLArray2D data object, 38
IDLitDatalDLArray3D data object, 38
IDLitDatal DL Image data object, 39
IDLitDatal DLImagePixels data object, 39
IDLitDatal DL Palette data object, 39
IDLitDatal DL Polyvertex data object, 39
IDLitDatal DLV ector data object, 40
IDLitDataOperation class, 128, 136
IDLitDataOperation object, 125
IDLitIMessaging class, 216
IDLitIMessaging object, 25
IDLitOpBytscl operation, 122
IDLitOpConvolution operation, 122
IDLitOpCurvefitting operation, 122
IDLitOperation class, 141, 152
IDLitOpSmooth operation, 122
IDLitParameterSet object, 37, 81
IDLitParameterSet objects, 33
IDLitReadASCI| file reader, 163
IDLitReadBinary file reader, 163
IDLitReadBMP file reader, 163
IDLitReadDICOM file reader, 163
IDLitReader class, 168
IDLitReadISV file reader, 164
IDLitReadJPEG file reader, 164
IDLitReadPICT file reader, 164
IDLitReadPNG file reader, 164

Index

IDLitReadTIFF file reader, 164
IDLitReadWAYV file reader, 165
IDLITSYS CREATETOOL function, 83
IDLitToolbase class, 70, 75
IDLitUI class, 212
IDLitUIHourGlass user interface service, 225
IDLitVisAxis visualization type, 91
IDLitVisColorbar visualization type, 91
IDLitVisContour visualization type, 91
IDLitVisHistogram visualization type, 91
IDLitVislmage visualization type, 91
IDLitVislsosurface visualization type, 92
IDLitVisLegend visualization type, 92
IDLitVisLight visualization type, 92
IDLitVisPlot visualization type, 92
IDLitVisPlot3D visualization type, 92
IDLitVisPolygon visualization type, 93
IDLitVisPolyline visualization type, 93
IDLitVisRoi visualization type, 93
IDLitVisSurface visualization type, 93
IDLitVisText visualization type, 93
IDLitVisualization class, 97, 108
IDLitVisVolume visualization type, 94
IDLitWriteASCI| file writer, 187
IDLitWriteBinary file writer, 187
IDLitWriteBMP file writer, 187
IDLitWritel SV filewriter, 188
IDLIitWriteJPEG file writer, 188
IDLitWritePICT file writer, 188
IDLitWritePNG file writer, 188
IDLitWriter class, 192, 199
IDLitWriteTIFF file writer, 189
IDLOPACITY_TABLE datatype, 35
IDLPALETTE datatype, 35
IDLPOLYVERTEX datatype, 35
IDLVECTOR datatype, 35
IDLVERTEX datatype, 35
informational messages, 221
Init method

data operation, 126

file reader, 166

iTool Developer’s Guide

Init method (continued)
file writer, 190
generalized operation, 139
iTool, 69
visualization, 95
INITIAL_DATA keyword, 81
initializing superclasses, 69, 96, 127, 140, 167,
191
integer properties, 51
INTEGER property datatype, 51
Intelligent Tool SeeiTool
intersection of aggregated properties, 61
ISA method to file reader, 173
iTool
class, registering, 78
command line arguments, 80
component framework See framework
creating, 67
data object classes, predefined, 38
datatypes
composite, 34
described, 32, 34
used by standard iTools, 34
described
error handling in launch routine, 82
help system, 29
Init method, 69
instantiating, 83
keyword arguments, 80
launch routine, 80
object class definition file, 69
object classes
documented, 11
reference documentation, 10
undocumented, 11
object hierarchy, 21
simple example, 85
standard base class, 70
system abject, 21
system preferences, 64
user interface architecture, 210

iTool Developer’s Guide

265

iTool (continued)
user interface object, 212
ITREGISTER, 78, 231

K
keyword arguments, 80

L

linestyle properties, 52
LINESTY LE property datatype, 52
location of bitmap resources, 28

M

messages
contents, 26
informational, 221
observers, 27
standard, 26
status, 217

messaging system, 18, 25

N

NAME property attribute, 59
names, parameter, 41
notification

described, 25

message contents, 26

messages, 18

observers, 27

sending, 25

standard messages, 26

system, 25

O

object descriptors, 20

object identifiers
defined, 19
described, 18

Index

266

object identifiers (continued) PromptUserY esNo method, 219

proxy, 20 properties
object-oriented programming, 68 aggregation, 50, 61, 98
observers, 27, 245 attributes, 50, 99
OnDataChangeUpdate method, 45, 105 defined, 58
OnDataDisconnect method, 107 DESCRIPTION, 59
operations ENUMLIST, 59

creating, 120 HIDE, 59

data-centric, 125 NAME, 59

described, 120 PROPERTY _IDENTIFIER, 59

example, 156 SENSITIVE, 59

IDLitOpBytscl, 122 TYPE, 59

IDLitOpConvolution, 122 UNDEFINED, 59

IDLitOpCurvefitting, 122 USERDEF, 60

IDLitOpSmooth, 122 VALID_RANGE, 60

pre-defined, 122 data types, 49

registering, 72 BOOLEAN, 51

standard base class, 128, 141 COLOR, 51

undo/redo, 123 ENUMLIST, 53

unregistering, 155 FLOAT, 51

INTEGER, 51
P LINESTYLE, 52
_ STRING, 51

parameters USERDEF, 51

datgtyp%, 32,41 described, 48

defined, 41 identifiers, 50, 57

names, 41 interface, 48

registered, 41 intersection of aggregated, 61

registering, 97 pre-registered, 55
preferences, 48 registering, 54, 98

file readers, 64 registration, 50

file writers, 64 retrieving values, 49

iTool system, 64 setting values, 49

system, 64 sheet, 48

visualization, 64 union of aggregated, 61
pre—reg@ered properties, 55 update mechanism, 63
presentation layer, 18 PROPERTY _IDENTIFIER property attribute,
ProbeStatusM essage method, 217 59

prompts, 219
PromptUserText method, 220

Index iTool Developer’s Guide

proxy
identifiers, 20
registration, 23

R

RecordFinalVVaues method, 147
RecordInitial Vaues method, 146
RedoOperation method, 150
reference documentation for iTool classes, 10
REGISTER_PROPERTIES keyword, 55
registered parameter, 41
RegisterFileReader method, 177
RegisterFileWriter method, 201
registering

aniTool class, 78

callback routines, 248

filereaders, 72, 177

filewriters, 72, 201

operations, 72, 153

parameters, 97

properties, 54, 98

user interface, services, 231

user interface panels, 244, 250

visualizations, 71
RegisterOperation method, 153
RegisterParameter method, 41
RegisterProperty method, 54
RegisterUl Service method, 212, 232
RegisterVisualization method, 110
RegisterWidget method, 213, 244
registration

ITREGISTER procedure, 22

methods, 22

properties, 50

proxy, 23

Register* methods, 22

visualization types, 110
RemoveByldentifier method, 33
REVERSIBLE _OPERATION property, 123,

154

iTool Developer’s Guide

267

S

sending messages, 25
sending notifications, 25
SENSITIVE property attribute, 59
SetData method to file writer, 197
SetProperty method

and property identifiers, 57

data operation, 134

file reader, 172

file writer, 196

generalized operation, 148

visualization, 104
SetPropertyAttribute method, 58
SHOW_EXECUTION_UI property, 132, 154
status information, providing, 216
status messages, 217
StatusM essage method, 217
string properties, 51
STRING property datatype, 51
superclassinitialization, 69, 96, 127, 140, 167,

191

symbol properties, 52
SYMBOL property data type, 52
system object, 21
system preferences, 64

T

thickness properties, 53
THICKNESS property data type, 53
TYPE

property, 250
property attribute, 59

TYPES property, 154

U

Ul panel See user interface panel

Ul service See user interface service
UNDEFINED property attribute, 59
undo/redo system, 123

Index

268

undocumented classes, 11 V
UndoExecute method, 135
UndoOperation method, 149
union of regated properties, 61 X
; a_gg ™ prop creating, 95

unregistering, 75 X

components, 75 defined, 90

file readers, 178 example, 113

filewriterS, 202 IDLitVisAxis, 91

generic component, 75 IDLitVisColorbar, 91
' IDLitVisContour, 91

VALID_RANGE property attribute, 60
visualization types

operation, 155 ITVISLe
visualization types, 112 IDLitVisHistogram, 91
UnRegisterUl Service method, 212 IDLitVisimage, 91
UnRegisterWidget method, 213 IDLitVisl Sosurgace, 92
user defined properties, 51 IDLitVisl egend, 92
user interface IDL!tV!Snght, 92
architecture, 210 IDLitVisPlot, 92
elements, 216 IDLitVisPlot3D, 92
panel IDLitVisPolygon, 93
creation routines, 243 IDLitVisPolyline, 93
described. 242 IDLitVisRoi, 93
example, 252 IDLitVisSurface, 93
registering, 244, 250 IDLitVisText, 93
TY PE property, 250 IDLitVisvolume, 94
services ’ predefined, 91
creating, 224, 226 preferences, 64
example, 234 registering, 71, 110
executi n;g 233 standard base class, 97
function, 226 unregistering, 112
IDLitUIHourGlass, 225 VISUALIZATION_TY PE keyword, 84
predefined, 225
using, 224 W
user interface panels, callback routines, 242 widgets, 210

user interface services, registering, 231
user interfaces, 18
USERDEF

property attribute, 60

property datatype, 51

Index iTool Developer’s Guide

	Online Manuals
	Online Guide
	IDL Documentation
	What's New in IDL 6.0
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	iTool User's Guide
	iTool Developer's Guide
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	External Development Guide
	Obsolete IDL Features
	Master Index of IDL Docs

	IDL DataMiner Documentation
	IDL Dataminer
	DataDirect Connect ODBC Reference (3.1.1 for IRIX)
	DataDirect Connect ODBC Reference (3.7 for other platforms)

	IDL Wavelet Documentation
	IDL Wavelet Toolkit

	ION Documentation
	Introduction to ION
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	Search Documentation

	Contents
	Overview
	What are iTools?
	What is the iTools Component Framework?
	Advantages of Using the Framework

	About this Manual
	What this Manual is Not

	About the iTools Code Base
	Documented vs. Undocumented Classes

	Skills Required to Use the iTools Component Framework

	Part I: Understanding the iTools Component Framework
	iTool System Architecture
	Overview
	iTool Object Identifiers
	Proxy Identifiers
	Object Descriptors

	iTool Object Hierarchy
	iTool System Object

	Registering Components
	Registration Methods

	iTool Messaging System
	Sending Notifications
	Notification Messages
	Observers

	System Resources
	Icon Bitmaps
	Help System

	Data Management
	Overview
	iTool Data Manager
	Adding Data to the Data Manager
	Removing Data from the Data Manager

	iTool Data Types
	Composite Data Types
	Data Types of iTool Components

	iTool Data Objects
	Data Objects
	Data Containers
	Parameter Sets

	Predefined iTool Data Classes
	Parameters
	Parameter Names
	Parameter Data Types
	Registering Parameters

	Data Type Matching
	Data Update Mechanism

	Property Management
	About the Properties Interface
	What is a Property?
	Properties vs. Preferences
	How are Properties Displayed?
	Setting and Retrieving Property Values
	Property Data Types
	Property Registration
	Property Identifiers
	Property Attributes
	Property Aggregation

	Property Data Types
	User Defined Property Types

	Registering Properties
	Registering a Property
	Pre-Registered Properties

	Property Identifiers
	Property Attributes
	Available Property Attributes

	Property Aggregation
	Working with Aggregated Properties

	Property Update Mechanism
	Properties of the iTools System

	Part II: Using the iTools Component Framework
	Creating an iTool
	Overview
	The iTool Creation Process

	Creating a New iTool Class
	Creating an Init Method
	Creating the Class Structure Definition

	Registering a New Tool Class
	Using ITREGISTER
	Example

	Creating an iTool Launch Routine
	Specifying Command-Line Arguments and Keywords
	Creating Data Objects
	Handling Errors
	Creating an iTool Instance

	Example: Simple iTool
	Class Definition File
	Launch Routine

	Creating a Visualization
	Overview
	The Visualization Type Creation Process

	Predefined iTool Visualization Classes
	Creating a New Visualization Type
	Creating an Init Method
	Creating a Cleanup Method
	Creating a GetProperty Method
	Creating a SetProperty Method
	Creating an OnDataChangeUpdate Method
	Creating an OnDataDisconnect Method
	Creating the Class Structure Definition

	Registering a Visualization Type
	Using IDLitTool::RegisterVisualization
	Specifying Useful Properties

	Unregistering a Visualization Type
	Example: Image-Contour Visualization
	Class Definition File

	Creating an Operation
	Overview
	The Operation Creation Process

	Predefined iTool Operations
	Operations and the Undo/Redo System
	Data-Centric Operations
	Generalized Operations

	Creating a New Data-Centric Operation
	How an IDLitDataOperation Works
	Creating an IDLitDataOperation
	Creating an Init Method
	Creating a Cleanup Method
	Creating an Execute Method
	Creating a DoExecuteUI Method
	Creating a GetProperty Method
	Creating a SetProperty Method
	Creating an UndoExecute Method
	Creating the Class Structure Definition

	Creating a New Generalized Operation
	How an IDLitOperation Works
	Creating an IDLitOperation
	Creating an Init Method
	Creating a Cleanup Method
	Creating a DoAction Method
	Creating a RecordInitialValues Method
	Creating a RecordFinalValues Method
	Creating a GetProperty Method
	Creating a SetProperty Method
	Creating an UndoOperation Method
	Creating a RedoOperation Method
	Creating the Class Structure Definition

	Registering an Operation
	Using IDLitTool::RegisterOperation
	Specifying Useful Properties

	Unregistering an Operation
	Example: Data Resample Operation
	Class Definition File

	Creating a File Reader
	Overview
	The File Reader Creation Process

	Predefined iTool File Readers
	Creating a New File Reader
	Creating an Init Method
	Creating a Cleanup Method
	Creating a GetProperty Method
	Creating a SetProperty Method
	Creating an IsA Method
	Creating a GetData Method
	Creating the Class Structure Definition

	Registering a File Reader
	Using IDLitTool::RegisterFileReader

	Unregistering a File Reader
	Example: TIFF File Reader
	Class Definition File

	Creating a File Writer
	Overview
	The File Writer Creation Process

	Predefined iTool File Writers
	Creating a New File Writer
	Creating an Init Method
	Creating a Cleanup Method
	Creating a GetProperty Method
	Creating a SetProperty Method
	Creating a SetData Method
	Creating the Class Structure Definition

	Registering a File Writer
	Using IDLitTool::RegisterFileWriter

	Unregistering a File Writer
	Example: TIFF File Writer
	Class Definition File

	Part III: Modifying the iTool User Interface
	iTool User Interface Architecture
	Overview
	User Interface Objects

	Using iTool User Interface Elements
	Overview
	Status Messages
	Prompts
	Informational Messages

	Creating a User Interface Service
	Overview
	Creating and Using a UI Service

	Predefined iTool UI Services
	Creating a New UI Service
	Creating the UI Service Routine
	Creating Supporting User Interface Elements

	Registering a UI Service
	Using ITREGISTER
	Example
	Using the RegisterUIService Method

	Executing a User Interface Service
	Example: Changing a Property Value
	Creating the SrvExample service
	Creating the SrvExample interface
	Creating an operation that calls the service
	Registering the SrvExample service
	Registering the opName operation
	Invoking the opName operation

	Creating a User Interface Panel
	Overview
	Creating and Using a UI Panel

	Creating a UI Panel Interface
	Panel Creation Routines
	About the Panel Widget
	Registering the Panel with the User Interface Object
	Adding Observers
	Create the Widget Hierarchy
	Create Event Handlers

	Creating Callback Routines
	Callback Routine Signature
	Registration of Callback Routines
	Retrieving Widget State Information

	Registering a UI Panel
	Registering the Panel in the iTool Launch Routine
	About the TYPE property
	Changing the Panel Location

	Example: A Simple UI Panel
	Panel Creation Routine
	Panel Event Handler Routine
	Panel Callback Routine
	Panel Type Specification

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

