
iTool Developer’s
Guide

IDL Version 6.0
July, 2003 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

0703IDL60ITD

Restricted Rights Notice
The IDL®, ION Script™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. Research Sys-
tems, Inc., reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty
Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of the soft-
ware, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered
by the Licensee or any others resulting from use of the IDL or ION software packages or their doc-
umentation.

Permission to Reproduce this Manual
If you are a licensed user of this product, Research Systems, Inc. grants you a limited, nontransfer-
able license to reproduce this particular document provided such copies are for your use only and
are not sold or distributed to third parties. All such copies must contain the title page and this
notice page in their entirety.

Acknowledgments
IDL® is a registered trademark and ION™, ION Script™, ION Java™, are trademarks of Research Systems Inc., registered in the
United States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 1999
National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by INTERSOLV, Inc., 1991-1998.

Use of this software for providing LZW capability for any purpose is not authorized unless user first enters into a license agreement
with Unisys under U.S. Patent No. 4,558,302 and foreign counterparts. For information concerning licensing, please contact: Unisys
Corporation, Welch Licensing Department - C1SW19, Township Line & Union Meeting Roads, P.O. Box 500, Blue Bell, PA 19424.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)

IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents
Chapter 1:
Overview .. 7
What are iTools? ... 8
What is the iTools Component Framework? ... 9
About this Manual ... 10
About the iTools Code Base .. 11
Skills Required to Use the iTools Component Framework ... 13

Part I: Understanding the iTools Component Framework

Chapter 2:
iTool System Architecture .. 17
Overview ... 18
iTool Object Identifiers ... 19
iTool Object Hierarchy .. 21
Registering Components ... 22
iTool Developer’s Guide 3

4

iTool Messaging System .. 25
System Resources .. 28

Chapter 3:
Data Management ... 31
Overview .. 32
iTool Data Manager ... 33
iTool Data Types .. 34
iTool Data Objects ... 36
Predefined iTool Data Classes ... 38
Parameters .. 41
Data Type Matching .. 43
Data Update Mechanism .. 45

Chapter 4:
Property Management .. 47
About the Properties Interface ... 48
Property Data Types .. 51
Registering Properties .. 54
Property Identifiers .. 57
Property Attributes ... 58
Property Aggregation ... 61
Property Update Mechanism .. 63
Properties of the iTools System ... 64

Part II: Using the iTools Component Framework

Chapter 5:
Creating an iTool ... 67
Overview .. 68
Creating a New iTool Class ... 69
Registering a New Tool Class .. 78
Creating an iTool Launch Routine ... 80
Example: Simple iTool .. 85

Chapter 6:
Creating a Visualization ... 89
Overview .. 90
Contents iTool Developer’s Guide

5

Predefined iTool Visualization Classes ... 91
Creating a New Visualization Type .. 95
Registering a Visualization Type .. 110
Unregistering a Visualization Type ... 112
Example: Image-Contour Visualization .. 113

Chapter 7:
Creating an Operation .. 119
Overview ... 120
Predefined iTool Operations ... 122
Operations and the Undo/Redo System ... 123
Creating a New Data-Centric Operation ... 125
Creating a New Generalized Operation ... 138
Registering an Operation ... 153
Unregistering an Operation ... 155
Example: Data Resample Operation ... 156

Chapter 8:
Creating a File Reader .. 161
Overview ... 162
Predefined iTool File Readers ... 163
Creating a New File Reader .. 166
Registering a File Reader .. 177
Unregistering a File Reader ... 178
Example: TIFF File Reader ... 179

Chapter 9:
Creating a File Writer .. 185
Overview ... 186
Predefined iTool File Writers .. 187
Creating a New File Writer ... 190
Registering a File Writer ... 201
Unregistering a File Writer .. 202
Example: TIFF File Writer .. 203
iTool Developer’s Guide Contents

6

Part III: Modifying the iTool User Interface

Chapter 10:
iTool User Interface Architecture .. 209
Overview .. 210
User Interface Objects .. 212

Chapter 11:
Using iTool User Interface Elements .. 215
Overview .. 216
Status Messages ... 217
Prompts .. 219
Informational Messages ... 221

Chapter 12:
Creating a User Interface Service ... 223
Overview .. 224
Predefined iTool UI Services ... 225
Creating a New UI Service .. 226
Registering a UI Service .. 231
Executing a User Interface Service .. 233
Example: Changing a Property Value .. 234

Chapter 13:
Creating a User Interface Panel ... 241
Overview .. 242
Creating a UI Panel Interface ... 243
Creating Callback Routines ... 248
Registering a UI Panel ... 250
Example: A Simple UI Panel ... 252

Index .. 261
Contents iTool Developer’s Guide

Chapter 1:

Overview
This chapter provides an overview of the IDL iTool Component Framework.
What are iTools? . 8
What is the iTools Component Framework? . 9
About this Manual . 10

About the iTools Code Base 11
Skills Required to Use the iTools Component
Framework . 13
iTool Developer’s Guide 7

8 Chapter 1: Overview
What are iTools?

IDL Intelligent Tools, or iTools, are applications written in IDL to perform a variety
of data analysis and visualization tasks. iTools share a common underlying
application framework, presenting a full-featured, customizable, application-like user
interface with menus, toolbars, and other graphical features. Several pre-defined
iTools are provided along with IDL; you can use these tools to explore and visualize
your data without writing any new code yourself. For information on using the
standard iTools provided with IDL, see the iTool User’s Guide.

But iTools are more than just a set of pre-written IDL programs. Behind the iTool
system lies the IDL Intelligent Tools Component Framework — a set of object class
files and associated utilities designed to allow you to easily extend the supplied
toolset or create entirely new tools of your own. This manual will help you
understand the iTools Component Framework so that you can customize existing
iTools or create entirely new ones.
What are iTools? iTool Developer’s Guide

Chapter 1: Overview 9
What is the iTools Component Framework?

The iTools component framework is a set of object class definitions written in the
IDL language. It is designed to facilitate the development of sophisticated
visualization tools by providing a set of pre-built components that provide standard
features including:

• creation of visualization graphics

• mouse manipulations of visualization graphics

• annotations

• management of visualization and application properties

• undo/redo capabilities

• data import and export

• printing

• data filtering and manipulation

• interface element event handling

In addition, the iTools component framework makes it easy to extend the system with
components of your own creation, allowing you to design a tool to manipulate and
display your data in any way you choose.

Advantages of Using the Framework

If you are accustomed to creating user interfaces for your IDL applications using IDL
widgets, using the iTools component framework will shorten your development time
by providing much of the application interface via the standard component building
blocks. In many cases, you are freed entirely from the need to create your own
interface elements, handle widget events, and manage the display of data. Even when
your application calls for additional user interface elements, the framework
eliminates the need for you to manually create those elements that your application
has in common with the standard iTool interface.

If you are accustomed to using IDL object graphics in your applications, the iTools
component framework provides a streamlined way of working with the object
graphics hierarchy. Many tasks, such as management of object properties and
manipulation of the object model, are handled automatically.
iTool Developer’s Guide What is the iTools Component Framework?

10 Chapter 1: Overview
About this Manual

The iTool Developer’s Guide describes the IDL iTools component framework and
provides examples of its use. After reading this manual, you will understand how to
use the component framework to create your own intelligent tools.

This manual is divided into three parts:

Part I: Understanding the iTools Component Framework

This section describes the iTools component framework in conceptual terms, and
outlines some of the processes you will use in creating new tools using the
framework. While an understanding of the topics in this section may be beneficial as
you develop your own applications, a complete understanding of the way the
framework operates is not required to begin building your own tools.

Part II: Using the iTools Component Framework

This section walks you through the process of creating a new iTool application, either
by extending an existing iTool or by building a new tool from scratch.

Part III: Modifying the iTool User Interface

This section discusses the process of adding your own interface elements to an iTool
application.

What this Manual is Not

This manual is not an API reference for the iTools object classes. Reference
documentation for the iTool classes, methods, and properties is located in the IDL
Reference Guide.

This manual is not a complete description of the object classes that constitute the
iTools component framework. We describe the object classes you will use to create
new iTools, but not necessarily the building blocks from which those classes are
constructed. If you desire a deeper understanding of how the component framework
functions than this manual provides, you can inspect the object class definition files,
which are provided in IDL .pro source code format in the itools/framework
subdirectory of your IDL lib directory.

See “Documented vs. Undocumented Classes” on page 11 for a complete explanation
of our approach to documenting the iTool component framework.
About this Manual iTool Developer’s Guide

Chapter 1: Overview 11
About the iTools Code Base

The iTools component framework is written almost entirely in the IDL language. The
IDL code that implements both the component framework and all of the standard
iTools included with IDL is available for you to inspect, copy, and learn from.

To inspect the iTools code, look in the lib/itools subdirectory of your IDL
installation directory. The iTools code base is organized as follows:

• In the lib/itools directory you will find code that implements the iTool
launch routines. These routines can be called directly at the IDL command line
to launch a specific iTool.

• In the lib/itools/framework directory you will find the core iTool object
class definitions and utility routines. The classes in this directory define how
the iTools operate; they are made available for your inspection, but they should
not be altered.

• In the lib/itools/components directory you will find derived iTool object
classes. The classes in this directory implement the non-core features of the
iTool toolset as included with IDL. You are encouraged to use these classes to
implement your own iTool functionality, either by subclassing from a derived
iTool object class or by modifying a copy of the class definition for a derived
class.

• In the lib/itools/ui_widgets directory you will find the IDL code that
creates an iTool user interface using IDL widgets. You may find it useful to
inspect some of these routines if you are creating a side panel or a dialog used
to collect parameter settings for an operation. See Chapter 10, “iTool User
Interface Architecture” for additional information on creating additional user
interfaces for an iTool.

Documented vs. Undocumented Classes

If you inspect the lib/itools directory and its subdirectories, you will notice that
there are many more classes included in the iTools component framework than are
documented in the IDL Reference Guide and in this manual. Our approach to
documenting the iTools code that is included with IDL is as follows:

• iTool launch routines for iTools included in the IDL distribution are
documented in the IDL Reference Guide. Use of the launch routines for the
pre-built iTools is discussed in the iTool User’s Guide.
iTool Developer’s Guide About the iTools Code Base

12 Chapter 1: Overview
• The core iTool component framework classes used to build individual iTools,
visualization types, operations, etc. are formally documented in the IDL
Reference Guide and discussed in detail in this manual. If an object class,
method, or property is necessary for the construction of a new iTool or
component of an iTool, it is formally documented in the IDL Reference Guide
or in this manual. Core iTool framework classes are located in the
lib/itools/framework subdirectory of the IDL installation directory.

• Supporting iTool component framework classes — those used to implement
the documented component framework classes — are not formally
documented. As noted previously, the code for these classes is available for
inspection. Supporting iTool framework classes are located in the
lib/itools/framework subdirectory of the IDL installation directory.

• Derived iTool classes — those used to implement individual iTools and their
features — are not formally documented. These classes are derived from the
formally documented classes, and as such can be understood by referring to the
formal documentation. Derived iTool framework classes are located in the
lib/itools/components subdirectory of the IDL installation directory.

• iTool user interface routines are not formally documented. These routines use
standard IDL widget programming techniques, and as such can be understood
by referring to the IDL widget documentation. User interface routines are
located in the lib/itools/ui_widgets subdirectory of the IDL installation
directory.

Warning on Using Undocumented Features

While you are encouraged to inspect the iTools code, and to copy or subclass from
derived classes and user interface routines, be aware that classes and routines that are
not formally documented are not guaranteed to remain the same from one release of
IDL to the next. Keep the following points in mind when implementing your own
iTools:

• RSI will change undocumented supporting classes as necessary to improve the
iTools system.

• RSI may also change undocumented derived classes to fix problems or add
functionality; in these cases, we will make every effort to preserve backwards
compatibility, but this is not guaranteed.

If you create new iTool classes based only on the formally documented iTool
interfaces, your tools should operate properly with future releases of IDL. If you base
your tools on undocumented derived classes, minor modifications may be necessary
to ensure future compatibility.
About the iTools Code Base iTool Developer’s Guide

Chapter 1: Overview 13
Skills Required to Use the iTools Component
Framework

The iTools component framework consists of a set of IDL object classes,
supplemented by utility routines. If you are already familiar with the concepts of
object-oriented programming, or have written programs that use IDL object graphics,
you will find the iTools framework easy to understand and use. The framework
approach means that most of the details of creating a full-featured and usable
application are already taken care of, leaving you free to concentrate on how best to
manipulate and visualize your data.

If you are familiar with procedural programming in IDL but new to object-oriented
programming, you will find developing iTools to be a gentle introduction to the topic.
The iTools framework has been designed to allow IDL users with little or no
experience writing object-oriented programs to easily customize and extend the basic
iTool applications. While some familiarity with the concepts of object-oriented
programming is necessary to successfully develop iTools, you should be able to
create simple modifications of existing tools almost immediately, and more complex
customizations soon thereafter.
iTool Developer’s Guide Skills Required to Use the iTools Component Framework

14 Chapter 1: Overview
Skills Required to Use the iTools Component Framework iTool Developer’s Guide

Part I: Understanding
the iTools Component

Framework

Chapter 2:

iTool System
Architecture
This chapter describes the iTool component framework architecture.
Overview . 18
iTool Object Identifiers 19
iTool Object Hierarchy 21

Registering Components 22
iTool Messaging System 25
System Resources . 28
iTool Developer’s Guide 17

18 Chapter 2: iTool System Architecture
Overview

The iTool system architecture is designed to maintain a separation between the
functionality provided by an iTool and the graphical presentation layer that reveals
that functionality to an iTool user (the iTool user interface). Such a separation allows
for the creation of different user interfaces for the same underlying functionality;
while the initial iTool user interface has been created using IDL widgets, it is easy to
imagine using other technologies to create an interface to the underlying iTool
functionality.

To support the goal of enabling different user interfaces for a given set of iTool
functionality, the iTool architecture includes the following features:

• A design in which a single iTool object (based on the IDLitTool class) contains
all non-interactive tool functionality. Similarly, a single iTool object (based on
the IDLitUI class) contains all user interface functionality.

• An object identifier system that provides a platform-neutral way to identify
objects across process and machine boundaries. Additionally, the object
identifier system is designed to work with existing component technologies
such as COM and Java.

• A minimal connection between the non-interactive tool functionality and the
presentation layer. The tool architecture provides a small set of highly abstract
methods that the tool and presentation layer use to communicate with each
other. This minimal connection means that the presentation layer needs only a
single object reference to the iTool object itself.

• A messaging system that allows one component to observe another, receiving
notification messages when the observed component changes in some way.

This chapter describes some of the core ideas of the iTool system: object identifiers,
the iTool system object and the object hierarchy it contains, the concept of
registration, and how information is passed between iTool components.
Overview iTool Developer’s Guide

Chapter 2: iTool System Architecture 19
iTool Object Identifiers

iTool object identifiers are simple strings that uniquely identify individual objects
within the hierarchy of iTool objects in much the same way that a computer file
system identifies files within a hierarchy of files. The object hierarchy (and, by
extension, the object identifiers) also describe where information about objects is
made visible in the iTool user interface; see “iTool Object Hierarchy” on page 21 for
additional discussion of the iTool hierarchy and the iTool system object.

Besides providing a familiar, user-readable way to identify objects in the iTool
system, object identifiers also allow iTool developers to refer to an object without
having to maintain an actual object reference to that object. This ability to use a
lightweight string object to refer to a potentially “heavy” object in the iTool system
makes it possible to maintain a very loose coupling between the objects that
implement an iTool’s functionality and those that implement its user interface. While
the iTools included in the initial release of the iTool system do not rely on this loose
coupling between functionality and user interface, it allows for object access that can
cross process and machine boundaries, paving the way for the use of the iTool system
in more distributed environments.

Note
Object identifiers are not to be confused with object descriptors. See “Object
Descriptors” on page 20 for details.

Object identifier strings are assigned when an object class is registered with either an
individual iTool or with the iTool system object. See “Registering Components” on
page 22 for a discussion of the registration process.

Identifiers can either be fully qualified, meaning that they depict the entire path from
the root iTool system object to the object being identified, or relative, meaning they
depict the path from the root of the current iTool. Fully qualified identifiers begin
with the “/” character, and refer to objects that are accessible to all iTools that become
active during the lifetime of the iTool system object. Relative identifiers do not begin
with a “/” and refer to objects that are accessible only to the current iTool.

For example, the identifier string

/DATA MANAGER/MY DATA

refers to an object named MY DATA, located in the system-level DATA MANAGER
container. Because the identifier is fully qualified, the MY DATA object is visible to
any iTool that is active during the iTool session.
iTool Developer’s Guide iTool Object Identifiers

20 Chapter 2: iTool System Architecture
Similarly, the identifier string

OPERATIONS/FILTERS/MY FILTER

refers to an object named MY FILTER, located in a sub-container of the iTool-level
OPERATIONS container named FILTERS. Because the identifier is relative, the
MY FILTER object is visible only to the current iTool.

Note
Object identifiers are stored as upper-case strings. Spaces are allowed.

Proxy Identifiers

In some cases, you want the same object to be located in multiple places in the iTool
object hierarchy. For example, the Undo operation appears in two places in the
standard iTool user interface: under the Edit menu and on the toolbar. Rather than
duplicating the Undo operation object in each of those places in the iTool object
hierarchy, we can use a proxy mechanism to register the same object instance with
multiple object identifiers. In the case of the Undo operation, the operation itself is
located in the EDIT subcontainer of the iTool’s OPERATIONS container, which
implies that the operation appears under the iTool’s Edit menu. A proxy (or alias) to
this object is created in the EDIT subcontainer of the iTool’s TOOLBAR container,
which places the operation on the toolbar as well. Only one instance of the Undo
object is created, but its action can be invoked from both the menu and the toolbar.

Proxy identifiers are assigned by the Register method for the object being proxied.
See “Registering Components” on page 22 for additional details.

Object Descriptors

Object descriptors are iTool objects that contain enough information about a given
object class to create an object of that class when necessary. In many cases, object
descriptors, rather than instances of the objects they create, are stored in the iTool
hierarchy; this approach allows object instances to be created only when needed.
Object descriptors also manage instances of objects that can be re-used by the system,
avoiding the need to create a new instance of an object (such as an operation) each
time it is used.

Cases in which an iTool developer will need to know about or use object descriptors
rather than object identifiers are very rare. We mention object descriptors here
because they are used extensively in the iTool object hierarchy to expose the
functionality of objects that are created as needed, rather than being created
automatically when the iTool is created.
iTool Object Identifiers iTool Developer’s Guide

Chapter 2: iTool System Architecture 21
iTool Object Hierarchy

The iTool system is a collection of object class instances organized in a hierarchy of
container objects. The hierarchy serves both to organize the numerous object
instances and to display information about the objects in the iTool user interface. In
most cases, an object’s location in the iTool hierarchy controls where and how the
object is made visible in the user interface.

For example, the Rotate operation object is stored in the iImage iTool’s object
hierarchy with the object identifier

OPERATIONS/OPERATIONS/ROTATE

From this identifier we can deduce two things:

1. The Rotate operation object is stored in the iTool’s object hierarchy in the
OPERATIONS container within the OPERATIONS container.

2. The Rotate operation will be displayed in the iTool’s widget interface under the
Operations menu.

iTool System Object

The iTool system object contains and provides a single point of access to all objects
managed by the iTool system. Only one instance of the iTool system object can exist
in a given IDL session; it is created automatically when any iTool is created.

Note
As an iTool developer, there is no need for you to create or otherwise interact with
the system object yourself. This discussion of the structure of the system object is
included solely to help you understand the organization of iTool objects.

The iTool system object is a subclass of the IDLitContainer object, which provides
functionality to manage a hierarchy of container objects via their object identifiers.
iTool Developer’s Guide iTool Object Hierarchy

22 Chapter 2: iTool System Architecture
Registering Components

Registering an object class links the file containing the IDL code that defines the
object (an iTool, a visualization type, an operation, etc.) with the object identifier.
Objects can be registered either with the iTool system object (in which case their
identifiers are fully qualified) or with an individual iTool class (in which case their
identifiers are relative to the iTool or to a specific container within the tool).

When an object is registered, it is not immediately instantiated. Instead, the
information required to create the object is saved in an object descriptor and placed in
the appropriate location in the iTool hierarchy. Later, when the functionality
contained in the object is needed, the object descriptor either instantiates the object or
provides a reference to an existing instance of the object.

Registration Methods

Objects are registered using the ITREGISTER procedure (to register the object with
the iTool system object) or by calling a Register method on an individual iTool
component object.

Registering Objects with the System Object

Individual iTools, visualization types, and user interface types can be registered with
the iTool system object. Of these:

• individual iTools must be registered with the system object before they can be
created and displayed.

• visualization types may be registered with the system object, but can also be
registered with an iTool. Visualization types that are registered with the system
object will be available to all iTools via the Insert Visualization dialog.

• user interface types must be registered with the system object; however,
creation of new user interfaces is a rare and complex occurrence.

To register an object with the iTool system object, use the ITREGISTER procedure.
See “ITREGISTER” in the IDL Reference Guide manual for details and “Registering
a New Tool Class” on page 78 for an example using ITREGISTER.

Registering Objects with an iTool

Visualization types, operations, manipulators, file readers, and file writers can be
registered with an individual iTool. Of these, all must be registered with an individual
Registering Components iTool Developer’s Guide

Chapter 2: iTool System Architecture 23
iTool except for visualization types, which may have been registered with the iTool
system object.

Note
Many operations, manipulators, file readers, and file writers are registered by the
IDLitToolbase class. If you create a new iTool based on this class, these features
will be registered automatically. See “Subclassing from the IDLitToolbase Class”
on page 75 for details.

Tip
If you want some, but not all, of the functionality exposed by the IDLitToolbase
class, you may find it useful to subclass from IDLitToolbase and unregister one or
more features. See the sections on unregistering items in the chapters devoted to
creating operations, file readers, and file writers.

To register an object with an individual iTool, use one of the Register methods of the
IDLitTool class. Register methods exist for each type of object that can be registered
(IDLitTool::RegisterOperation for operations, for example). A call to a registration
method looks something like this

self -> RegisterObject, ObjectName, Object_Class_Name

where Object is one of the object types that can be registered (Visualization,
Operation, Manipulator, FileReader, or FileWriter), ObjectName is the string you will
use when referring to the object, and Object_Class_Name is a string that specifies the
name of the class file that contains the object’s definition.

See the Register methods under “IDLitTool” in the IDL Reference Guide manual for
additional details, and “Registering a Visualization Type” on page 110, “Registering
an Operation” on page 153, “Registering a File Reader” on page 177, and
“Registering a File Writer” on page 201 for examples.

Specifying Object Identifiers

You can use the IDENTIFIER keyword to any of the Register methods to specify an
object identifier for the registered object, and thus specify the object’s location in the
iTool object hierarchy and in the user interface. If you do not specify a value for the
IDENTIFIER keyword, a suitable object identifier will be constructed based on the
type of object being registered and the specified ObjectName.

Proxy Registration

You can also register an object as a proxy (or alias) to another object that has already
been registered. Registering an object as a proxy places the proxy object in the iTool
iTool Developer’s Guide Registering Components

24 Chapter 2: iTool System Architecture
hierarchy in the specified place, but actually calls the original object when a user
requests the proxied object. To register a proxy object, specify an object identifier
string as the value of the PROXY keyword to the Register method. For example, the
following call to the RegisterOperation method places a proxy to the Undo object
stored in the iTool hierarchy under OPERATIONS/EDIT/UNDO in the hierarchy under
TOOLBAR/EDIT/UNDO:

self -> RegisterOperation, 'Undo', PROXY = 'Operations/Edit/Undo', $
IDENTIFIER = 'Toolbar/Edit/Undo'
Registering Components iTool Developer’s Guide

Chapter 2: iTool System Architecture 25
iTool Messaging System

Notifications are messages sent from one iTool component to one or more observer
components. The iTool messaging system provides a unified way for components to
notify each other of important changes; it is quite general, and can be used to send
messages related to any type of change. Some examples:

• Visualizations send notifications when components of the visualization are
selected or unselected.

• Notifications are issued when the user changes the value of a property. All
visualizations or operations that depend on the value of that property are
automatically notified.

Note
Messaging functionality is provided mainly by the IDLitTool and IDLitUI objects,
using the interface defined by the IDLitIMessaging object.

In many cases, the iTool messaging system is transparent to you as an iTool
developer; you may never need to create code that uses the messaging system. The
main exception to this rule is the creation of user interface panels (discussed in
Chapter 13, “Creating a User Interface Panel”), but there may be other instances in
which the notifications sent by the iTool framework itself do not meet your needs and
must be augmented by your own message generation and handling code.

Sending Notifications

To send a notification, an iTool component calls the IDLitIMessaging::DoOnNotify
method, providing the object identifier of the component that is sending the
notification, a string that uniquely identifies the message being sent, and any value
associated with the message. The method call looks like:

Obj -> DoOnNotify, IdOriginator, IdMessage, Value

where Obj is the object calling the DoOnNotify method, IdOriginator is the iTool
component object identifier string of the component that changed, IdMessage is a
string that uniquely identifies the change, and Value is the value associated with
IdMessage.

The DoOnNotify method is available to most iTool components, since all
components subclass from the IDLitIMessaging class either directly or indirectly.

See “IDLitIMessaging::DoOnNotify” in the IDL Reference Guide manual for details.
iTool Developer’s Guide iTool Messaging System

26 Chapter 2: iTool System Architecture
The IdOriginator argument is generally the object identifier of an iTool component
object, but it can be any string value.

Notification Messages

The value of the IdMessage argument to the DoOnNotify method is a string value that
must uniquely identify the message being sent. iTool components and callback
routines that process notification messages use the value of the IdMessage string to
determine what action to take when a message arrives from an observed component.

When you call the DoOnNotify method yourself, use caution in choosing the value of
the IdMessage string. If the string you choose conflicts with a message being sent by
another iTool component, the message-handling routines may be activated at the
wrong time.

Standard iTool Messages

The following is a list of notification messages sent by components that are part of
the standard iTool distribution:

Message String Meaning

SELECTED

UNSELECTED

The selection state of an item being watched had
changed. Value contains the object identifier of the
component whose selection changed.

SELECTIONCHANGED The selected item within the current iTool changed.
Value contains and empty string.

ADDITEMS

MOVEITEMS

REMOVEITEMS

A call to the Add, Move, or Remove method of an
IDLitContainer that supports the IDLitIMessaging
interface is made. Value contains the object identifier
of the item that was added, moved, or removed.

SETPROPERTY The value of a property has been changed on a
component. In some cases, Value contains the
identifier of the property that changed.

SENSITIVE

UNSENSITIVE

The SENSITIVE property of a component has
changed. Value contains and empty string.

Table 2-1: Standard iTool Messages.
iTool Messaging System iTool Developer’s Guide

Chapter 2: iTool System Architecture 27
Observers

To watch for notifications from an iTool component, an iTool component calls the
IDLitIMessaging::AddOnNotifyObserver method, providing the object identifier of
the component that is watching and the object identifier of the object being watched
as arguments. The method call looks like:

Obj -> AddOnNotifyObserver, IdObserver, IdSubject

where Obj is the object calling the AddOnNotifyObserver method, IdObserver is the
iTool component object identifier string of the component that is watching for
notification messages, and IdSubject is a string value identifying the item that
IdObserver is interested in. This is normally the object identifier of an iTool
component object, but it can be any string value.

Note
When writing a user interface panel, the IdObserver argument contains the object
identifier of a user interface adaptor created by a call to the RegisterWidget method
of the IDLitUI class. See “Creating a UI Panel Interface” on page 243 for details.
iTool Developer’s Guide iTool Messaging System

28 Chapter 2: iTool System Architecture
System Resources

This section contains information on resources used by the iTool system.

Icon Bitmaps

Some iTool components have associated icons. Icons for iTool components are
displayed in the tree view of a browser window.

Bitmaps used as icons in the iTool system must be either .bmp or .png files. The
images contained in icon bitmap files can be either True Color (24-bit color) images
or paletted (8-bit color) images.

Note
There are different requirements for bitmap images that will be displayed on button
widgets. See “Using Button Widgets” in Chapter 27 of the Building IDL
Applications manual for details.

By default, bitmap files for icons used by the iTool system are stored in the bitmaps
subdirectory of the resource subdirectory of the IDL distribution. If an icon’s
bitmap file is located in this directory, specify the base name of the file — without the
filename extension — as the value of the ICON property of the component. For
example, to use the file arrow.bmp, located in the resource/bitmaps
subdirectory of the IDL distribution, specify the value of the ICON property as
follows:

ICON = 'arrow'

If you include the filename extension when setting the ICON property, the iTool
system assumes that the specified value is the full path to the bitmap file. For
example, to use the file my_icon.png, stored in the directory /home/mydir as an
icon, specify the value of the ICON property as follows:

ICON = '/home/mydir/my_icon.png'

If you are distributing your iTool code to others, you may want to specify a path
relative to the location of your code for the icon bitmap files. To retrieve the path to
the file containing code for a given routine, you could use code similar to the
following:

; Use my own Icon bitmap
iconName = 'my_icon.png'
routineName = 'myVisualizationType__define'
routineInfo = ROUTINE_INFO(routineName, /SOURCE)
path = FILE_DIRNAME(routineInfo.path, /MARK_DIRECTORY)
System Resources iTool Developer’s Guide

Chapter 2: iTool System Architecture 29
iconPath = path + iconName

This code uses the ROUTINE_INFO function to retrieve the path to the file specified
by the string routineName. It then extracts the directory that contains the file using
the FILE_DIRNAME function, and concatenates the directory name with the name of
the bitmap file contained in the string iconName.

Note
The routine specified by routineName must have been compiled for the
ROUTINE_INFO function to return the correct value.

Including this code in a routine and setting the ICON property equal to the variable
iconPath provides a platform-independent method for locating bitmap files in a
directory relative to the directory from which your iTool code was compiled.

If the value of the ICON property is not set and the iTool system needs to display an
bitmap to represent a component, the file resource/bitmaps/new.bmp is used.

Help System

The iTool system allows the user to select “Help on Selected Item” from the Help
menu (or, in the case of the Operations and System Preferences browsers, from the
context menu) to display online help for the selected item.

Note
Help for iTool items is provided via a call to the IDL ONLINE_HELP procedure. It
is beyond the scope of this chapter to discuss the creation of help files suitable for
display by ONLINE_HELP; please see Chapter 19, “Providing Online Help For
Your Application” in the Building IDL Applications manual for additional
information.

Information about the topic to be displayed by ONLINE_HELP is contained in an
XML format file named idlithelp.xml, located in the lib/itools/help
subdirectory of the IDL distribution.

The format for a help entry is:

<Topic>
 <Keyword>helpKeyword</Keyword>
 <Link type="MSHTMLHELP">contextNumber</Link>
 <Link type="PDF" book=bookName>pdfDestination</Link>
 <Link type="HTML">htmlFile</Link>
</Topic>

Where:
iTool Developer’s Guide System Resources

30 Chapter 2: iTool System Architecture
• helpKeyword is the iTool object class name of the selected object. There can be
multiple <Keyword> entities for a given <Topic>, but they must all precede
any <Link> entities.

• contextNumber is an integer used by the Microsoft Windows HTMLHelp
viewer to select a topic from the specified .chm or .hlp file.

• pdfDestination is a string used by the Adobe Acrobat Reader software to select
a topic from the specified .pdf file.

• htmlFile is a string that specifies the name of an HTML file to display in the
default browser.

• bookName is an optional attribute that specifies the name of the file that
contains the HTMLHelp contextNumber or the pdfDestination specified as the
value of the <Link> entity.

The type attribute of the <Link> entity is required, and can have one of the
following values:

• MSHTMLHELP

• PDF

• HTML

If more than one <Link> entry is present, IDL will choose which to display based on
the platform; on Windows platforms, the <Link> entity with the type attribute set to
MSHTMLHELP will be used, on Unix platforms, the <Link> entity with the type
attribute set to PDF will be used. If the appropriate platform-specific <Link> is not
present, the first <Link> entity of a type that can be displayed on the current platform
will be used.
System Resources iTool Developer’s Guide

Chapter 3:

Data Management
This chapter describes the iTool data management system.
Overview . 32
iTool Data Manager 33
iTool Data Types . 34
iTool Data Objects . 36

Predefined iTool Data Classes 38
Parameters . 41
Data Type Matching 43
Data Update Mechanism 45
iTool Developer’s Guide 31

32 Chapter 3: Data Management
Overview

The iTools system is designed to turn raw data — numbers stored in computer
memory — into visualizations that convey information to the viewer. Using data to
create a visual display requires some way to route each piece of data to the
appropriate part of the algorithm that displays it. In the terminology used by the iTool
system, each data item must be associated with a parameter of a visualization.

The iTools system manages the relationship between data and the visualizations that
display data via two mechanisms: iTool data types and parameter data types. The
iTool data type is a property of an IDLitData object (or of an object that inherits from
the IDLitData object); it can be any valid scalar string. iTool data types are described
in detail in “iTool Data Types” on page 34. Parameter data types are assigned when a
visualization object registers its parameters with the iTool system; they also can be
any valid scalar string. Parameter data types are described in “Parameters” on
page 41.

Note
iTool operations, which do not support the concept of parameters or parameter
names, determine whether they can act on a given data object solely on the basis of
the iTool data type.

The iTool data type and parameter data types are used to match up data objects with
visualizations that need data to display. See “Data Type Matching” on page 43 for a
description of how matches are made.

This chapter describes data-management tasks undertaken by the iTool developer.
Interactive users manipulate data using a graphical interface known as the iTool Data
Manager; this interface allows the user to select and import data items into the iTool
system and to manually associate data items with parameters. See Chapter 2,
“Importing and Exporting Data” in the iTool User’s Guide manual for a complete
description of the Data Manager and its use.
Overview iTool Developer’s Guide

Chapter 3: Data Management 33
iTool Data Manager

Data imported into the iTool system is stored in a separate data object hierarchy that
is available to all iTools. When a data item is placed in the data manager hierarchy,
whether interactively by a user or automatically by some operation of an iTool, the
data item is immediately visible to all iTools. The hierarchy of the data manager
reflects the hierarchy of the data containers (IDLitDataContainer and
IDLitParameterSet objects) it holds.

Unless you are creating new data items within an iTool operation, it is unlikely that
you will need to add data to (or remove data from) the data manager yourself.
Addition of data items to the data manager is handled automatically if data is
imported via any of the standard iTool data import mechanisms (choosing Open from
the File menu, or clicking an Import button in the Data Manager user interface).

Adding Data to the Data Manager

To add an IDLitData, IDLitDataContainer, or IDLitParameterSet object to the data
manager, call the IDLitContainer::AddByIdentifier method on your iTool object with
the identifier string '/Data Manager' (note that identifier strings can include
spaces, as between the words “Data” and “Manager”):

; Create an IDLitDataObject
oData = OBJ_NEW('IDLitData', myData, IDENTIFIER = 'Cool Data')

; Get a reference to the current iTool object.
; (The GetTool method is inherited from the IDLitIMessaging
; class.)
oTool = self -> GetTool()

; Add the data object to the data manager
oTool -> AddByIdentifier, '/Data Manager', oData

This results in the oData data object being stored in the data manager with the
identifier '/Data Manager/Cool Data'.

See “iTool Object Identifiers” on page 19 for additional information on identifier
strings.

Removing Data from the Data Manager

To remove data from the data manager, call the IDLitContainer::RemoveByIdentifier
method on your iTool object with the full identifier string used to add the data object:

oTool -> RemoveByIdentifer, '/Data Manager/Cool Data'
iTool Developer’s Guide iTool Data Manager

34 Chapter 3: Data Management
iTool Data Types

Every iTool data item (IDLitData object or IDLitDataContainer object) has an
associated iTool data type. The iTool data type of a data item is specified via the
TYPE property of the data object, which can contain any scalar string.

Note
Do not confuse iTool data types with IDL’s inherent data types — integers and
floating-point integers of various sizes and precisions, strings, structures, pointers,
and object references. iTool data types are used only by the iTool system when
matching data objects with the parameters expected by a visualization or operation.
IDL data types describe how a value or values are stored in computer memory. iTool
data types need not correspond directly to an IDL data type.

iTool data typing allows the iTool system to match up data objects with visualization
parameters even if the data objects have not been explicitly associated with the
visualization parameters. Similarly, an iTool operation may apply only to specific
forms of data; the iTool data typing mechanism allows an operation to “see” only data
of the appropriate type.

Composite Data Types

Because IDLitData objects can be collected in IDLitDataContainer objects (and, by
extension, IDLitParameterSet objects), it is possible that data objects with different
iTool data types will be collected in a single container. The iTool data typing system
allows these heterogeneous data sets to be named with unique iTool data types that
reflect the contents of the container. For example, you might define a data container
that contains IDLitData objects with the iTool data types of IDLVECTOR and
IDLARRAY2D with your own iTool data type, such as MY_PLOT.

Data Types of iTool Components

Since the iTool data type of a data item can be any scalar string value, it is up to the
iTool developer to ensure that a data object assigned a given iTool data type contains
the data expected by visualizations and operations that accept that type.

Visualizations or operations that accept an iTool data type are written to act on data
items that have specific IDL data types (or collections of specific IDL data types, in
the case of compound data types). If the data object contains data in a format not
expected by the visualization or operation, errors or unexpected behaviors may result.
iTool Data Types iTool Developer’s Guide

Chapter 3: Data Management 35
Table 3-1 lists the iTool data types defined by the standard iTools included with IDL.
You should avoid using these iTool data type names when defining data objects that
do not match the contents listed here; if data objects with different contents are given
these iTool data type names, portions of the standard iTool functionality may no
longer function correctly.

In addition to avoiding use of the standard iTool data type names for new data types,
you should consider using unique naming schemes for iTool data types you create.
Choosing your own iTool data type naming scheme will help to avoid conflicts with
iTools built by others. This is especially important if you intend to share your iTool
code with other IDL users. Choosing a unique prefix or suffix for your iTool data type
names should guard against most namespace collisions.

iTool Data Type Contents

IDLARRAY2D A two-dimensional array of any IDL data type.

IDLARRAY3D A three-dimensional array of any IDL data type.

IDLIMAGE A composite data type that includes
IDLIMAGEPIXELS and IDLPALETTE data.

IDLIMAGEPIXELS One or more two-dimensional image planes.

IDLOPACITY_TABLE A 256-element byte array

IDLPALETTE A 3 x 256-element byte array

IDLPOLYVERTEX A composite data type that contains a vector of
vertex data and a vector of connectivity data.

IDLVECTOR A vector of any IDL data type.

IDLVERTEX A vector containing vertex data.

Table 3-1: iTool data types used by the standard iTools shipped with IDL.
iTool Developer’s Guide iTool Data Types

36 Chapter 3: Data Management
iTool Data Objects

Each item of data used by an iTool must be encapsulated in an IDLitData object. Data
objects can be grouped into collections using the IDLitDataContainer class or its
subclass, IDLitParameterSet.

Data Objects

IDLitData objects can hold data items of any IDL data type. The IDLitData class
provides iTool data typing and data change notification functionality, and when
coupled with the IDLitDataContainer object forms the base element for the
construction of composite data types.

IDLitData objects implement the iTools notifier interface, which provides a
mechanism by which observers of a data item can be alerted when the state of the
information contained in the data object changes. See “Data Update Mechanism” on
page 45 for details on the notification system.

Data objects are created using standard IDL object-creation syntax. For example, to
create a data object that contains a vector of data:

; Create a data vector containing 10 random values
myData = RANDOMU(seed, 10)
; Create a new data object from the vector.
oData = OBJ_NEW('IDLitDataIDLVector', myData)

The IDLitDataIDLVector class is a subclass of IDLitData designed to hold vector
data. See “IDLitData” in the IDL Reference Guide manual for a complete description
of the data object, its methods, and its properties.

Data Containers

IDLitDataContainer objects can hold any number of IDLitData or
IDLitDataContainer objects. This ability to organize data into object hierarchies
allows for the creation of composite data types.

Data container objects are created using standard IDL object-creation syntax, and
individual data objects are included in the data container via a call to the
IDLitContainer::Add method. For example, the following statements create a new
data container and add the data object created in the previous section:

; Create a data container
oDataContainer = OBJ_NEW('IDLitDataContainer')
; Add a data object.
oDataContainer -> Add, oData
iTool Data Objects iTool Developer’s Guide

Chapter 3: Data Management 37
In this example we do not specify an iTool data type for the data container object
itself.

Tip
Often, you will organize data using a subclass of the IDLitDataContainer class: the
IDLitParameterSet.

See “IDLitDataContainer” in the IDL Reference Guide manual for a complete
description of the data container object, its methods, and its properties.

Parameter Sets

The IDLitParameterSet class is a specialized subclass of the IDLitDataContainer
class that provides the ability to associate parameters with the contained IDLitData
and IDLitDataContainer objects. This association allows the iTool developer to
package a set of data parameters in a single container, which is then provided to the
iTools system for processing and display. See “IDLitParameterSet” in the IDL
Reference Guide manual for a complete description of the parameter set object, its
methods, and its properties.

Note
Do not confuse parameter sets, which are containers for data objects, with
parameters, which define how data is used by a visualization object. Parameters are
described in “Parameters” on page 41.

Using a parameter set object is very similar to using a data container object. The
parameter set itself is created using standard IDL object-creation syntax. The
parameter set object allows for the association of a parameter with each added data
object. For example, the following statements create a new parameter set and add the
data object created in the previous section, assigning a parameter:

; Create a parameter set object
oParameterSet = OBJ_NEW('IDLitParameterSet')
; Add a data object, assigning a parameter
oParameterSet -> Add, oData, PARAMETER_NAME = 'Y data'
iTool Developer’s Guide iTool Data Objects

38 Chapter 3: Data Management
Predefined iTool Data Classes

The iTool system distributed with IDL includes a number of predefined data classes.
The predefined classes are subclasses of the IDLitData class; each performs
initialization steps that are commonly used when creating data objects that contain
data of specific composite data types. Some of the predefined data classes create data
sub-containers to hold associated data objects, and some register properties
associated with the data.

Note
The predefined iTool data subclasses are provided as a convenience. You can always
create a generic IDLitData object rather than using one of the predefined classes.

You can create objects of these data classes in the same way you create a generic data
object: by calling the OBJ_NEW function and specifying the appropriate class name.
You can also create new specialized data classes based on one of the predefined
classes. Data classes are llocated in the lib/itools/components subdirectory of
the IDL directory.

IDLitDataIDLArray2D

Creates an IDLitData object of whose TYPE property is set to IDLARRAY2D. Used
to store a two-dimensional array of any IDL data type.

Registered Properties

• None

Data Sub-containers

• None

IDLitDataIDLArray3D

Creates an IDLitData object of whose TYPE property is set to IDLARRAY3D. Used
to store a three-dimensional array of any IDL data type.

Registered Properties

• None

Data Sub-containers

• None
Predefined iTool Data Classes iTool Developer’s Guide

Chapter 3: Data Management 39
IDLitDataIDLImage

Creates an IDLitData object of whose TYPE property is set to IDLIMAGE. Used to
store two-dimensional image data. Images can be constructed from multiple image
planes.

Registered Properties

• INTERLEAVE

Data Sub-containers

• An IDLitDataIDLPalette object named “Palette” that contains palette
information provided as an argument to the Init method.

• An IDLitDataIDLImagePixels object named “Image Planes” that contains the
image data provided as an argument to the Init method.

IDLitDataIDLImagePixels

Creates an IDLitData object of whose TYPE property is set to IDLIMAGEPIXELS.
Used to store the raw image data (pixels).

Registered Properties

• INTERLEAVE

Data Sub-containers

• None

IDLitDataIDLPalette

Creates an IDLitData object of whose TYPE property is set to IDLPALETTE. Used
to store palette data.

Registered Properties

• None

Data Sub-containers

• None

IDLitDataIDLPolyvertex

Creates an IDLitData object of whose TYPE property is set to IDLPOLYVERTEX.
Used to store vertex and connectivity lists suitable for use with the IDLgrPolygon and
IDLgrPolyline objects.
iTool Developer’s Guide Predefined iTool Data Classes

40 Chapter 3: Data Management
Registered Properties

• None

Data Sub-containers

• An IDLitData object named “Vertices” that contains the vertex list.

• An IDLitData object named “Connectivity” that contains the connectivity list.

IDLitDataIDLVector

Creates an IDLitData object of whose TYPE property is set to IDLVECTOR. Used to
store a one-dimensional array of any IDL data type.

Registered Properties

• None

Data Sub-containers

• None
Predefined iTool Data Classes iTool Developer’s Guide

Chapter 3: Data Management 41
Parameters

Parameters represent data items used in a well-defined way by an algorithm that is
computing a result. In the scheme of the iTools, parameters are the raw material fed to
visualization objects — the IDL routines that create visual displays.

For example, a visualization object that creates a simple line plot might require two
parameters: vectors of dependent and independent data values. These two vectors
would be passed to the routines within the visualization object for processing, and the
result would be displayed in the iTool window.

When a visualization object is created, it registers one or more parameters with the
iTool system. Each parameter has a parameter name and can be of one or more iTool
data types. Parameter names are used to route the individual data items to the correct
routines within the visualization object. See Chapter 6, “Creating a Visualization” for
more on creating visualization objects.

Note
Do not confuse parameters, which define how data is used by a visualization object,
with parameter sets, which are containers for data objects. Parameter sets are
described in “Parameter Sets” on page 37.

Parameter Names

Each parameter registered by a visualization is given a parameter name. The
parameter name is a scalar string, and its scope is the visualization by which it is
registered. Different visualizations can register parameters that have different
properties using the same parameter name.

Parameter Data Types

Each parameter registered by a visualization is associated with one or more iTool data
types by setting the TYPES property. The value of the TYPES property can be a
scalar string or a string array; a single parameter can be associated with multiple data
types. See “iTool Data Types” on page 34 for more on iTool data types.

Registering Parameters

Parameters are registered when a visualization is created; that is, in the Init method of
an iTool visualization class. To register a parameter, call the RegisterParameter
iTool Developer’s Guide Parameters

42 Chapter 3: Data Management
method of the IDLitParameter class (of which iTool visualization classes are a
subclass):

self -> RegisterParameter, ParmameterName, $
TYPES = ['DataType1', ..., 'DataTypeN']

where ParameterName is a string that defines the name of the parameter and the
TYPES keyword is set equal to a string or array of strings specifying the iTool system
data types the parameter can represent. (See “iTool Data Types” on page 34 for
information on iTools data types.)

A typical parameter registration call looks like the following:

self->RegisterParameter, 'Y', /INPUT, TYPES='IDLVECTOR', /OPTARGET

Here, the string argument Y is the name of the parameter being registered. The
INPUT keyword specifies that Y is an input parameter (specified by the method’s
caller), the TYPES keyword specifies that Y is a vector, and the OPTARGET keyword
specifies that operations can be performed on the Y vector.

Additional keywords can be set in the call to RegisterParameter. See the
documentation for “IDLitParameter::RegisterParameter” in the IDL Reference Guide
manual for additional details.
Parameters iTool Developer’s Guide

Chapter 3: Data Management 43
Data Type Matching

To understand how the iTool data type matching system works, consider the
following:

• When a visualization is created, it registers one or more parameters, assigning
a parameter name and one or more iTool data types to each.

• When a data object is imported or created by an iTool, it is assigned one or
more iTool data types.

• When a parameter set object is created to contain data objects, each data object
can optionally be assigned one or more parameter names.

Now assume that an iTool user requests that a particular visualization be created from
a particular collection of data objects, which are stored in a parameter set object. The
iTool system will do the following:

1. Retrieve the parameter name and iTool data types registered for the
visualization’s first parameter.

2. If the parameter set object contains a data object whose Parameter Name
matches the parameter name of the visualization’s first registered parameter,
use that data object as the data for the visualization parameter.

3. If the parameter set object does not contain a data object with a matching
Parameter Name, check the parameter set for data objects for which the
Parameter Name property is not set. If there are no data objects without
Parameter Names, no data is associated with the visualization parameter.

4. Check the iTool data types of the data objects without Parameter Names. If a
data object whose iTool data type matches the list of registered data types for
the visualization parameter is found, use that data object as the data for the
visualization parameter. If no data objects match any data types, no data is
associated with the visualization parameter.

5. Repeat until all registered visualization parameters have been either populated
with data, skipped, or there are no more data objects to supply data.

Note
Parameter name matching is done in a case-insensitive fashion. If a parameter is
registered with the parameter name “MyParameter” and a data object has its
Parameter Name property set to “myParameter”, the two will match.
iTool Developer’s Guide Data Type Matching

44 Chapter 3: Data Management
The Figure 3-1 illustrates this process as a flow diagram.

Figure 3-1: Data type matching algorithm used by iTools.
Data Type Matching iTool Developer’s Guide

Chapter 3: Data Management 45
Data Update Mechanism

When the data contained in a data item changes (usually as the result of the
application of a data-centric operation), all visualizations that depend on that data
item are automatically notified of the change via a call to the visualization object’s
OnDataChangeUpdate method. (See “Creating an OnDataChangeUpdate Method”
on page 105 for details.)

The data update mechanism is automatic; if you have assigned iTool data types (and,
optionally, parameter names) to your data objects, the data matching mechanisms of
the IDLitParameter interface will ensure that updates happen when necessary. Unless
you have modified core iTool functionality, you do no need to handle data change
updates yourself.
iTool Developer’s Guide Data Update Mechanism

46 Chapter 3: Data Management
Data Update Mechanism iTool Developer’s Guide

Chapter 4:

Property Management
This chapter describes the iTool property interface.
About the Properties Interface 48
Property Data Types 51
Registering Properties 54
Property Identifiers 57

Property Attributes 58
Property Aggregation 61
Property Update Mechanism 63
Properties of the iTools System 64
iTool Developer’s Guide 47

48 Chapter 4: Property Management
About the Properties Interface

Object properties are used to store settings and values that relate to visualizations,
data, and other components of an iTool. The iTools system presents a graphical
property sheet interface to tool users; see “Property Sheets” in Chapter 3 of the iTool
User’s Guide manual for a description of the property sheet interface. As a tool
developer, you can manage individual property values, as well as the property set that
is visible to users of your application, programmatically.

Note
In most cases, you do not need to manage updates to visualizations or data that
result from a user’s modifications to values in a property sheet. See “Property
Update Mechanism” on page 63 for details.

What is a Property?

A property is a value that is associated with an object instance. Examples of property
values commonly associated with iTool objects are Boolean True/False flags, text
strings, color values stored as RGB triplets, and integer and floating point values. For
example, a plot visualization object might have a Color property that defines the line
color as an RGB triplet, a Line thickness property that defines the thickness of the
line drawn as an integer value in pixels, and a Name property that defines how the
plot is referred to in iTool browser windows.

Properties vs. Preferences

In the case of objects that have a visual representation (plots, annotations, surfaces,
axes, etc.), properties apply to a single instance of an object. When a new instance of
the same type of object is created, any property changes applied to the first object are
not applied to the second. For example, if you change the color of a plot line to red,
subsequent plot lines will still be created with the default line color.

In the case of non-visual objects (operations, file readers and writers, and
manipulators) only one instance of the object is created no matter how many times
the object is requested. As a result, properties set on these objects will “stick” until
changed again. For example, if you change the value of the Width property of the
Smooth operation, the property will retain the value you set until you change it again
or close that iTool.

Finally, properties that apply to all iTools and which are preserved between iTool
sessions are known as preferences. Preferences include default values for properties
About the Properties Interface iTool Developer’s Guide

Chapter 4: Property Management 49
of visual objects (default line style, colors, etc.), and default properties for file
readers, and file writers.

How are Properties Displayed?

Any iTool object can have properties. Properties are always displayed via the iTool
property sheet interface, which uses the IDL WIDGET_PROPERTYSHEET function
to present property names and values in a columnar display. The way the property
sheet interface is displayed to iTool users depends on the type of object for which
properties are being displayed.

• For visualization objects (any graphical item that appears in the iTool
window), the property sheet can be displayed by double-clicking on an item in
the iTool window, by selecting Properties from the window context menu, or
by selecting Visualization Browser from the Window menu.

• For operations, the property sheet can be displayed by selecting Operations
Browser from the Operations menu.

• For system preferences, the property sheet can be displayed by selecting
Preferences from the File menu.

Setting and Retrieving Property Values

iTool property values are set and retrieved like all object property values, via
SetProperty and GetProperty methods. See “IDLitComponent::SetProperty” and
“IDLitComponent::GetProperty” in the IDL Reference Guide manual for details, but
remember that your own object classes will be responsible for implementing these
methods and handling the actual property values. See the chapters in “Using the
iTools Component Framework” for examples of GetProperty and SetProperty
methods.

Property Data Types

While object properties can contain any value that can be stored in IDL, the iTool
property sheet interface (based on the WIDGET_PROPERTYSHEET routine) will
only display properties of nine pre-defined property data types. (See “Property Data
Types” on page 51 for descriptions of the pre-defined types.) In addition, the property
sheet interface allows developers to build and associate a separate widget-based user
interface that allows iTool users to specify data values of any IDL data type. User-
defined property values are discussed in “User Defined Property Types” on page 53.
iTool Developer’s Guide About the Properties Interface

50 Chapter 4: Property Management
Property Registration

In order for an object property to be displayed by the graphical property sheet
interface, it must be registered with the iTool system. Properties are generally
registered when an object is created; see “Registering Properties” on page 54 for
additional details.

Property Identifiers

Properties are referenced within the iTools system using property identifiers, which
are simple scalar strings defined when the property is registered. See “Property
Identifiers” on page 57 for details.

Property Attributes

In addition to the property value, properties have attributes that affect the way the
property is displayed in the property sheet user interface. See “Property Attributes”
on page 58 for details.

Property Aggregation

Visualization objects can be built from any number of atomic IDL graphic objects
and iTool visualization objects. The property aggregation mechanism allows the
properties of all of the objects in a visualization to be displayed in a single property
sheet. See “Property Aggregation” on page 61 for details.
About the Properties Interface iTool Developer’s Guide

Chapter 4: Property Management 51
Property Data Types

Registered properties must be of one of the data types listed in Table 4-1.

Note
Properties of objects that are not registered (that is, properties that cannot appear in
a property sheet) can be of any IDL data type.

Type
Code

Type Description

0 USERDEF User Defined properties can contain values of any IDL
type, but must also include a string value that will be
displayed in the property sheet. See “User Defined
Property Types” on page 53 for additional discussion of
User Defined property types.

1 BOOLEAN Boolean properties contain either the integer 0 or the
integer 1.

2 INTEGER Integer properties contain an integer value. If a property of
integer data type has a VALID_RANGE attribute that
includes an increment value, the property is displayed in a
property sheet using a slider. If no increment value is
supplied, the property sheet allows the user to edit values
manually.

3 FLOAT Float properties contain a double-precision floating-point
value. If a property of float data type has a
VALID_RANGE attribute that includes an increment
value, the property is displayed in a property sheet using a
slider. If no increment value is supplied, the property sheet
allows the user to edit values manually.

4 STRING String properties contain a scalar string value

5 COLOR Color properties contain an RGB color triplet

Table 4-1: iTools property data types.
iTool Developer’s Guide Property Data Types

52 Chapter 4: Property Management
6 LINESTYLE Linestyle properties contain an integer value between 0
and 6, corresponding to the following IDL line styles:

• 0 = Solid

• 1 = Dotted

• 2 = Dashed

• 3 = Dash Dot

• 4 = Dash Dot Dot

• 5 = Long Dashes

• 6 = No Line

See Appendix B, “Property Controls” in the iTool User’s
Guide manual for a visual example of the available line
styles.

7 SYMBOL Symbol properties contain an integer value between 0 and
8, corresponding to the following IDL symbol types:

• 0 = No symbol

• 1 = Plus sign

• 2 = Asterisk

• 3 = Period (Dot)

• 4 = Diamond

• 5 = Triangle

• 6 = Square

• 7 = X

• 8 = “Greater-than” Arrow Head (>)

• 9 = “Less-than” Arrow Head (<)

See Appendix B, “Property Controls” in the iTool User’s
Guide manual for a visual example of the available
symbols.

Type
Code Type Description

Table 4-1: iTools property data types.
Property Data Types iTool Developer’s Guide

Chapter 4: Property Management 53
User Defined Property Types

The User Defined property type lets you to create a custom interface that allow users
of your iTool to select data of types other than the predefined iTool property types.
Creating a user defined property type entails the following:

• Creating a EditUserDefProperty method for the iTool component (usually a
visualization or operation) that uses the user defined property. See
“IDLitComponent::EditUserDefProperty” in the IDL Reference Guide manual
for details.

• Creating user interface code to allow users to select a value. In the initial
release of the iTool system, this means writing an IDL widget interface, but in
future releases other users interfaces may be available.

• Creating a user interface service to display the interface. See Chapter 12,
“Creating a User Interface Service” for details.

8 THICKNESS Thickness properties contain an integer value between 1
and 10, corresponding to the thickness (in points) of the
line.

9 ENUMLIST Enumerated List properties contain an array of string
values defined when the property is registered. The
GetProperty method returns the zero-based index of the
selected item.

Type
Code Type Description

Table 4-1: iTools property data types.
iTool Developer’s Guide Property Data Types

54 Chapter 4: Property Management
Registering Properties

In order for a property associated with an iTool component to be included in the
property sheet for that component, the property must be registered with the iTool. The
property registration mechanism accomplishes several things:

• It allows you to expose as many or as few of the properties of an underlying
object as you choose.

• It allows you to add user-defined properties to existing objects, and expose
those new properties to users of your application.

Note
You can write code to access and change property values programmatically, even if
the property being changed is not registered.

Registering a Property

Register a property by calling the RegisterProperty method of the IDLitComponent
class:

self -> RegisterProperty, PropertyIdentifier [, TypeCode] $
[, ATTRIBUTE = value]

where PropertyIdentifier is a string that uniquely identifies the property, TypeCode is
an integer between 0 and 9 specifying the property data type, and ATTRIBUTE is a
property attribute. You can specify multiple property attributes in the call to
RegisterProperty; see “Property Attributes” on page 58 for details.

Note
The property identifier string must obey certain rules; see “Property Identifiers” on
page 57 for details.

You can omit the TypeCode parameter and specify a type keyword; the following two
method calls are identical:

self -> RegisterProperty, 'MYPROPERTY', 1

self -> RegisterProperty, 'MYPROPERTY', /BOOLEAN

See “Property Data Types” on page 51 for a list of property data types, their type
codes, and the associated keywords to the RegisterProperty method.

A typical property registration call looks like the following:
Registering Properties iTool Developer’s Guide

Chapter 4: Property Management 55
self -> RegisterProperty, 'FONT_STYLE', $
ENUMLIST = ['Normal', 'Bold'], $
NAME = 'Font style'

Here, the string argument FONT_STYLE is the property identifier of the property
being registered; this string must be the same as the name of the keyword used with
the GetProperty or SetProperty method when changing the value of the property.

The ENUMLIST keyword specifies that the property data type is an enumerated list
of strings containing two possible property values ('Normal', 'Bold'); this will
appear as a pulldown list of values in the property sheet. The NAME keyword
specifies the string that will be used as the label for the property in the property sheet;
if NAME is omitted, the property identifier string will be used in the property sheet.

Note
Values set via keywords to the RegisterProperty method are known as property
attributes. Property attributes can be modified after registration using the
SetPropertyAttribute method, described in “Property Attributes” on page 58.

Additional keywords can be set in the call to RegisterProperty. See the documentation
for “IDLitComponent::RegisterProperty” in the IDL Reference Guide manual for
additional details.

In addition to registering the property using RegisterProperty, you must make sure
that the GetProperty and SetProperty methods of your object handle the value of the
property being registered.

Pre-Registered Properties

Not all properties need to be explicitly registered in your iTool code in order to be
displayed in a property sheet. Most of the IDL graphics objects (IDLgrAxis,
IDLgrPlot, etc.) have a set of properties that are automatically registered if you set the
REGISITER_PROPERTIES property of the object to 1 when it is instantiated. See
the list of object properties contained in the documentation for the IDL graphics
objects in the IDL Reference Guide to determine which properties are registered
when the REGISTER_PROPERTIES property is set.

There may be times when you want some, but not all, of the registrable properties of
a graphics object to appear in the property sheet interface. You have two options in
this case:

1. Register the properties of the graphics object individually, with calls to the
RegisterProperty method.
iTool Developer’s Guide Registering Properties

56 Chapter 4: Property Management
2. Use the REGISTER_PROPERTIES keyword when instantiating the graphics
object, then set the HIDE property attribute on the properties you want to
remove from the property sheet. See “Property Attributes” on page 58 for more
on this option.
Registering Properties iTool Developer’s Guide

Chapter 4: Property Management 57
Property Identifiers

Property identifiers are scalar string values that identify a registered property. The
property identifier string must be accepted as a keyword by the GetProperty and
SetProperty methods for the object. Like all IDL keywords, property identifier strings
must be valid IDL variable names, and cannot contain spaces or non-alphanumeric
characters other than “_”, “!”, and “$”. See “IDL_VALIDNAME” in the IDL
Reference Guide manual for details on valid IDL variable names.

Note
You can specify the property identifier string using any case; IDL will match the
property identifier with the GetProperty or SetProperty keyword in a case-
insensitive manner. As a matter of style, using upper case letters when specifying
property identifiers helps someone reading your code visually match the property
identifier with the keyword values.

The property identifier is not displayed in the property sheet interface; the value of
the NAME property attribute is displayed instead. However, if you do not supply the
NAME attribute, the iTool system will assign it the same value as the property
identifier.
iTool Developer’s Guide Property Identifiers

58 Chapter 4: Property Management
Property Attributes

Property attributes are values associated with a property that affect the way the
property is displayed in the iTool property sheet interface. Attributes could be
considered properties-of-properties; as with actual properties, special methods are
used to get and set attribute values.

Note
A property must be registered in order to set or retrieve attribute values.

Property attributes can be set in the call to the IDLitComponent::RegisterProperty
method; simply include the attribute name and its value as a keyword-value pair.

If a property has already been registered, you can change the registered attribute
values using the SetPropertyAttribute method of the IDLitComponent class:

self -> SetPropertyAttribute, PropertyIdentifier, ATTRIBUTE = value

where PropertyIdentifier is a string that uniquely identifies the property, ATTRIBUTE
is one of the property attributes described in “Available Property Attributes” on
page 58, and value is the attribute value. See “Property Identifiers” on page 57 for a
discussion of property identifier strings.

A typical property attribute modification call looks like the following:

self -> SetPropertyAttribute, 'COLOR', NAME = 'Surface color'

Here, we change the Name attribute of the COLOR property; when this property is
displayed in a property sheet, the label will be Surface color.

See “IDLitComponent::SetPropertyAttribute” in the IDL Reference Guide manual for
additional details.

Available Property Attributes

Every registered iTool property has the following attributes. Property attributes can
be specified as keywords to the RegisterProperty method of the IDLitComponent
class. Attributes whose names are followed by the word “Get” can be retrieved using
the GetPropertyAttribute method of the IDLitComponent class; attributes whose
names are followed by the word “Set” can be set using the SetPropertyAttribute
method.
Property Attributes iTool Developer’s Guide

Chapter 4: Property Management 59
DESCRIPTION (Get, Set)

A string value containing a text description of the property. This string is displayed in
the property sheet interface.

ENUMLIST (Get, Set)

An array of string values to be displayed in the property sheet interface as an
enumerated list. This property type allows the user to select a string value from a
dropdown list in the user interface, but returns the integer index of the selected item
as the value of the property. This attribute is only used by properties of TYPE = 9
(enumerated list).

HIDE (Get, Set)

A Boolean flag that specifies whether the property should be displayed in the
property sheet interface.

NAME (Get, Set)

A string value that is displayed as the property name in the property sheet interface. If
the NAME attribute is not specified in the call to the RegisterProperty method, this
attribute will be set to the property identifier string.

PROPERTY_IDENTIFIER (Get)

A string value containing the property identifier. See “Property Identifiers” on
page 57 for details.

SENSITIVE (Get, Set)

A Boolean flag that specifies whether the property should be editable by the user
when displayed in the property sheet interface. Properties with the SENSITIVE
attribute set to 0 are displayed, but are dimmed and are not editable.

TYPE (Get)

The property data type code for the property. See “Property Data Types” on page 51
for details.

UNDEFINED (Get, Set)

A Boolean flag that indicates that the property should appear as a blank cell when
displayed in the property sheet interface. This is useful in situations where properties
iTool Developer’s Guide Property Attributes

60 Chapter 4: Property Management
of multiple objects are displayed in the property sheet (either because multiple
objects are selected, or because the objects have been grouped).

Note
The iTool developer is responsible for setting this property attribute back to zero.
Use the SET_DEFINED field of the WIDGET_PROPERTYSHEET event structure
to determine when to set the UNDEFINED attribute back to zero.

USERDEF (Get, Set)

A string that represents the value of a user-defined property. See “User Defined
Property Types” on page 53 for details.

VALID_RANGE (Get, Set)

A two- or three-element array of integers or floating-point values. If the
VALID_RANGE attribute contains a value, the property sheet interface will allow the
user to edit the numerical value by dragging a slider control. The first element of the
array represents the minimum allowed value, the second element represents the
maximum allowed value, and the third element (if present) represents an increment
value. If an increment is specified, only values that are integer multiples of the
increment, plus the initial value, are allowed. This attribute is only used by properties
of TYPE = 2 or TYPE = 3 (integer or float).
Property Attributes iTool Developer’s Guide

Chapter 4: Property Management 61
Property Aggregation

The iTools property aggregation mechanism allows the properties of several different
objects held by the same container object to be displayed in the same property sheet
automatically. Without property aggregation, you would have to manually register all
of the properties of the objects contained in your visualization type object.

Aggregate the properties of contained objects using the Aggregate method of the
IDLitVisualization class:

self -> Aggregate, Object_Reference

where Object_Reference is a reference to the object whose properties you want
aggregated into the visualization object. A typical property aggregation call looks like
the following:

self._oSymbol = OBJ_NEW('IDLitSymbol', PARENT = self)
self -> Aggregate, self._oSymbol

Here, the first line creates an IDLitSymbol object and stores it in the _oSymbol field
of the visualization object’s class structure. The second line calls the Aggregate
method with the object reference to the IDLitSymbol object as the argument. After
the call to the Aggregate method, all registered properties of the IDLitSymbol object
will be exposed in the property sheet for the visualization itself.

Note
The IDLitVisualization::Add method includes an AGGREGATE keyword. This
keyword is simply a shorthand method of aggregating the properties of an object
during the call to the Add method, eliminating the need to call the Aggregate
method separately. The call

self -> Add, Object_Reference, /AGGREGATE

is the same as the following two calls:

self -> Add, Object_Reference
self -> Aggregate, Object_Reference

Working with Aggregated Properties

When the properties of multiple objects are aggregated in a visualization object, there
are two possible ways to display the combined property set: a union or an
intersection. The way aggregated properties are displayed by a given visualization
iTool Developer’s Guide Property Aggregation

62 Chapter 4: Property Management
depends on the value of the visualization’s PROPERTY_INTERSECTION property:
by default, this property is not set (it contains a value of 0), and the union of the
aggregated properties is displayed. If PROPERTY_INTERSECTION is set to 1 when
the visualization object is created, the intersection of the aggregated properties is
displayed. The following sections explain the behavior of the property sheet interface
in both situations.

Union

By default, a visualization object displays the union of the properties of any
aggregated objects. Properties are displayed in the property sheet interface as follows:

• All of the unique properties of all of the aggregated objects are displayed.

• Only one instance of a given property is displayed. This means that if multiple
objects have the same property, this property will be displayed only once, and
all objects will have the same property value.

• The visualization will appear in iTool browsers as a single object — the
aggregated objects will not be visible in the browser hierarchy.

Intersection

If the PROPERTY_INTERSECTION property is set when the visualization is
created, the visualization object displays the intersection of any aggregated objects.
Properties are displayed in the property sheet interface as follows:

• Only properties that are common to all of the aggregated objects are displayed
as properties of the visualization object. Changing the value of a common
property in the visualization’s property sheet changes the value for all
aggregated objects.

• The visualization will appear in iTool browsers as a container object — the
aggregated objects will be visible beneath the visualization object in the
browser hierarchy (unless the property’s HIDE attribute is set, in which case
the property will not be displayed). Selecting an individual aggregated object
in the browser hierarchy will display that object’s own properties.

• If the value of a property that is common to all of the aggregated objects is
different for different objects, the value will show in the parent container’s
property sheet as undefined.
Property Aggregation iTool Developer’s Guide

Chapter 4: Property Management 63
Property Update Mechanism

When a user changes the value of a property via the property sheet interface, the
object that implements the property is automatically updated. If the object has a
visual representation, the display of the iTool window is also updated automatically.

The update mechanism is handled by the SetProperty method; as long as any
SetProperty methods you create call the SetProperty methods of their superclasses,
there is nothing more you need to do.

Property changes are automatically recorded by the iTool undo/redo system. You do
not need to supply any extra code to support undo/redo.
iTool Developer’s Guide Property Update Mechanism

64 Chapter 4: Property Management
Properties of the iTools System

iTools system preferences are default settings for the values of properties of
visualization types, file readers, file writers, and the iTool system itself. System
preferences are revealed to the user via the system preferences browser, which is
displayed when a user selects File → Preferences in an iTool
Properties of the iTools System iTool Developer’s Guide

Part II: Using the
iTools Component

Framework

Chapter 5:

Creating an iTool
This chapter describes the process of creating an new iTool definition and command-line launch
routine.
Overview . 68
Creating a New iTool Class 69
Registering a New Tool Class 78

Creating an iTool Launch Routine 80
Example: Simple iTool 85
iTool Developer’s Guide 67

68 Chapter 5: Creating an iTool
Overview

Creating a new iTool using the iTools component framework is vastly simpler than
creating a similar tool from scratch in IDL. The standard iTool user interface and
functionality can be included in any new iTool with a few simple lines of code. Using
the iTools framework leaves you free to concentrate on developing functionality
unique to your application.

That said, creating even the simplest iTool does require that you have a basic
familiarity with the concepts of object-oriented programming in general, and with the
process of creating object-oriented programs in IDL in particular. If you have written
even very simple object-oriented applications in IDL, or in another language such as
Java or C++, you probably already have the necessary skills. For background
information on writing object-oriented applications in IDL, see Chapter 22, “Object
Basics” in the Building IDL Applications manual.

The iTool Creation Process

To create a new iTool, you will do the following:

• Choose an iTool object class on which your new tool will be based. In almost
all cases, you will base new iTools either on the IDLitToolbase class or on an
iTool class that is itself based on IDLitToolbase. The IDLitToolbase class
defines all of the standard iTool functionality exposed by the individual iTools
included with IDL.

• Define the visualization types, data operations, user interface tools
(manipulators), and data import/export features that will be available in your
iTool. You can choose from a variety of predefined features included with the
iTool system as included with IDL, or you can create your own. The process of
defining the features available in your new iTool is discussed in “Creating a
New iTool Class” on page 69.

• Register your new iTool class with the system as described in “Registering a
New Tool Class” on page 78.

• Provide an IDL procedure that creates an instance of your new iTool class, as
described in “Creating an iTool Launch Routine” on page 80.

This chapter describes the process of creating a new iTool from existing visualization
types, operations, and file readers and writers. The chapters that follow describe how
to create your own visualization types, operations, and file readers and writers to be
incorporated into new iTools.
Overview iTool Developer’s Guide

Chapter 5: Creating an iTool 69
Creating a New iTool Class

An iTool object class definition file must contain, at the least, the class Init method
and the class structure definition routine. The Init method contains the statements that
register any operations, visualizations, and file readers or writers available in the
iTool. The class structure definition routine defines an IDL structure that will be used
when creating new instances of the iTool object.

The process of creating an iTool definition is outlined in the following sections:

• “Creating an Init Method” on page 69

• “Creating the Class Structure Definition” on page 75

Creating an Init Method

The iTool class Init method handles any initialization required by the iTool object,
and should do the following:

• call the Init methods of any superclasses

• register visualizations, operations, and file readers/writers available in the new
iTool but not registered by any superclasses

• perform other initialization steps as necessary

• return the value 1 if the initialization steps are successful, or 0 otherwise

Superclass Initialization

The iTool class Init method should call the Init method of any required superclass.
For example, if your iTool is based on an existing iTool, you would call that tool’s Init
method:

success = self -> SomeToolClass::Init()

where SomeToolClass is the class definition file for the iTool on which your new
iTool is based. The variable success contains a 1 if the initialization was successful.

Note
Your iTool class may have multiple superclasses. In general, each superclass’ Init
method should be invoked by your class’ Init method.
iTool Developer’s Guide Creating a New iTool Class

70 Chapter 5: Creating an iTool
Error Checking

Rather than simply calling the superclass Init method, it is a good idea to check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method; if the returned value is 0
(indicating failure), the current Init method also immediately returns with a value of
0:

IF (self -> SomeToolClass::Init() EQ 0) THEN RETURN, 0

This convention is used in all iTool classes included with IDL. RSI strongly suggests
that you include similar checks in your own class definition files.

Keywords to the Init Method

Properties of the iTool class can be set in the Init method by specifying the property
names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitTool class are available to any iTool class. See
“IDLitTool Properties” in the IDL Reference Guide manual.

Use keyword inheritance (the _EXTRA keyword) to pass keyword parameters
through to the superclass as necessary. See “Keyword Inheritance” in Chapter 4 of the
Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.

Standard Base Class

While you can create your new iTool from any existing iTool class, in many cases,
iTool classes you create will be subclassed directly from the base class
IDLitToolbase:

IF (self -> IDLitToolbase::Init(_EXTRA = _extra) EQ 0) THEN $
RETURN, 0

The IDLitToolbase class provides the base iTool functionality used in the tools
created by RSI. See “Subclassing from the IDLitToolbase Class” on page 75 for
details.

Note
To create an iTool that does not include the standard iTool functionality, subclass
from the IDLitTool class.
Creating a New iTool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 71
Return Value

If all of the routines and methods used in the Init method execute successfully, the
method should indicate successful initialization by returning 1. Other iTools that
subclass from your iTool class may check this return value, as your routine should
check the value returned by any superclass Init methods called.

Registering Visualizations

Registering a visualization type with an iTool class allows instances of the iTool to
create and display visualizations of that type. Any number of visualization types can
be registered for use by a given iTool.

Note
You must register at least one visualization type with your iTool class. Unlike
operations, and file readers and writers, no visualization types are registered by the
IDLitToolbase class.

Visualization types are registered by calling the IDLitTool::RegisterVisualization
method:

self -> RegisterVisualization, Visualization_Type, $
VisType_Class_Name

where Visualization_Type is the string you will use when referring to the visualization
type, and VisType_Class_Name is a string that specifies the name of the class file that
contains the visualization type’s definition.

Note
The file VisType_Class_Name__define.pro must exist somewhere in IDL’s
path for the visualization type to be successfully registered.

For example, the following method call registers a visualization type named myVis
for which the class definition is stored in the file
myVisualization__define.pro:

self -> RegisterVisualization, 'myVis', 'myVisualization'

See “Registering a Visualization Type” on page 110 for additional details. See
“Predefined iTool Visualization Classes” on page 91 for a list of visualization types
included in the iTool system as installed with IDL.
iTool Developer’s Guide Creating a New iTool Class

72 Chapter 5: Creating an iTool
Registering Operations

Registering an operation with an iTool class allows instances of the iTool to apply the
registered operation to data selected in the iTool. Any number of operations can be
registered with a given iTool.

Operations are registered by calling the IDLitTool::RegisterOperation method:

self -> RegisterOperation, Operation_Type, OpType_Class_Name, $
IDENTIFIER = identifier

where Operation_Type is the string you will use when referring to the operation,
OpType_Class_Name is a string that specifies the name of the class file that contains
the operation’s definition, and identifier is a string containing the operation’s iTool
identifier. (The identifier is used to specify where on the iTool’s menu bar the
operation will appear. See “iTool Object Identifiers” on page 19 for a discussion of
iTool system identifiers.)

Note
The file OpType_Class_Name__define.pro must exist somewhere in IDL’s
path for the visualization type to be successfully registered.

For example, the following method call registers an operation named myOp for which
the class definition is stored in the file myOperation__define.pro, and places the
menu selection Change My Data in the Filters folder of the iTool Operations
menu.

self -> RegisterVisualization, 'myOp', 'myOperation', $
IDENTIFIER = 'Operations/Filters/Change My Data'

See “Registering an Operation” on page 153 for additional details. See “Predefined
iTool Operations” on page 122 for a list of operations included in the iTool system as
installed with IDL.

Registering File Readers and Writers

Registering a file reader or file writer with an iTool class allows instances of the iTool
to read or write files of the type handled by the reader or writer. Any number of file
readers and writers can be registered with a given iTool.

File readers are registered by calling the IDLitTool::RegisterFileReader method:

self -> RegisterFileReader, Reader_Type, ReaderType_Class_Name, $
ICON = icon

where Reader_Type is the string you will use when referring to the file reader,
ReaderType_Class_Name is a string that specifies the name of the class file that
Creating a New iTool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 73
contains the file writer’s definition, and icon is a string containing the name of a
bitmap file used to represent the file reader.

Similarly, file writers are registered by calling the IDLitTool::RegisterFileWriter
method:

self -> RegisterFileWriter, Writer_Type, WriterType_Class_Name, $
ICON = icon

where Reader_Type is the string you will use when referring to the file reader,
ReaderType_Class_Name is a string that specifies the name of the class file that
contains the file writer’s definition, and icon is a string containing the name of a
bitmap file used to represent the file writer. See “Icon Bitmaps” on page 28 for details
on where bitmap icon files are located.

Note
The class definition files ReaderType_Class_Name__define.pro or
WriterType_Class_Name__define.pro must exist somewhere in IDL’s path
for the file reader or writer to be successfully registered.

For example, the following method call registers a file reader named myReader for
which the class definition is stored in the file myFileReader__define.pro, and
specifies the file reader.bmp located in the home/mydir directory as the icon to
use on the toolbar.

self -> RegisterFileReader, 'myReader', 'myFileReader', $
ICON = '/home/mydir/reader.bmp'

See “Registering a File Reader” on page 177 for additional details. See “Predefined
iTool File Readers” on page 163 for a list of file readers included in the iTool system
as installed with IDL.

Similarly, the following method call registers a file writer named myWriter for
which the class definition is stored in the file myFileWriter__define.pro, and
specifies the file writer.bmp located in the home/mydir directory as the icon to
use on the toolbar.

self -> RegisterFileReader, 'myWriter', 'myFileWriter', $
ICON = '/home/mydir/writer.bmp'

See “Registering a File Writer” on page 201 for additional details. See “Predefined
iTool File Writers” on page 187 for a list of file writers included in the iTool system
as installed with IDL.
iTool Developer’s Guide Creating a New iTool Class

74 Chapter 5: Creating an iTool
Example Init Method

The following example code shows a very simple Init method for an iTool named
ExampleTool. This function should be included in a file named
ExampleTool__define.pro.

FUNCTION ExampleTool::Init, _REF_EXTRA = _EXTRA

; Call the Init method of the super class.
IF (self -> IDLitToolbase::Init(NAME='ExampleTool', $

DESCRIPTION = 'Example Tool Class', _EXTRA = _extra) EQ 0) THEN $
RETURN, 0

; Register a visualization
self -> RegisterVisualization, 'Image', 'IDLitVisImage', $

ICON = 'image'

; Register an operation
self -> RegisterOperation, 'Byte Scale', 'IDLitOpBytScl', $

IDENTIFIER = 'Operations/Byte Scale'

RETURN, 1

END

Discussion

The ExampleTool is based on the IDLitToolbase class (discussed in “Subclassing
from the IDLitToolbase Class” on page 75). As a result, all of the standard iTool
operations, manipulators, file readers and writers are already present. The
ExampleTool Init method needs to do only three things:

1. Call the Init method of the superclass, IDLitToolbase, using the _EXTRA
keyword inheritance mechanism to pass through any keywords provided when
the ExampleTool Init method is called.

2. Register a visualization type for the tool. We choose the standard image
visualization defined by the idlitvisimage__define.pro class definition
file,

3. Register an operation. We choose an operation that implements the IDL
BYTSCL function, defined by the idlitopbytscl__define.pro class
definition file and place a menu item in the iTool Operations menu.
Creating a New iTool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 75
Note
This example is intended to demonstrate how simple it can be to create a new iTool
class definition. While the class definition for an iTool with significant extra
functionality will register more features, the process is the same.

Unregistering Components

In some cases, you may want to subclass from an iTool class that contains features
you do not want to include in your class. Rather than building a class that duplicates
most, but not all, of the functionality of the existing class, you can create a subclass
that explicitly unregisters the components that you don’t want included.

For each Register method of the IDLitTool class there is a corresponding UnRegister
method. Call the UnRegister method with the Name you used when registering the
component. For example, if your superclass registers an operation with the identifier
'MultiplyBy100' and you do not want this operation included in your class, you
would include the following method call in your iTool class Init method:

self -> UnRegisterOperation, 'MultiplyBy100'

Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
data types of those fields. The object class structure must have been defined before
any objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure
named ObjectClass__define (where ObjectClass is the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle” in Chapter 22 of the Building IDL Applications manual.

Subclassing from the IDLitToolbase Class

The IDLitToolbase class defines the base operations and user interface functionality
used in iTools created by RSI. If your aim is to create an iTool that has base
functionality similar to that included in the standard iTools, you will want to subclass
from the IDLitToolbase class, or from another tool that subclasses from the
IDLitToolbase class.

The IDLitToolbase class registers a large number of operations, manipulators, file
readers, and file writers. This base feature set may change from release to release;
iTool Developer’s Guide Creating a New iTool Class

76 Chapter 5: Creating an iTool
inspect the file idlittoolbase__define.pro in the lib/itools subdirectory
of your IDL distribution for the exact set of features included in your distribution.

Note
To create an iTool that does not include the standard iTool functionality, subclass
from the IDLitTool class.

In general, the IDLitToolbase class registers the following types of features:

Standard menu items — Operations that appear in the File, Edit, Insert, Window,
and Help menus are defined in the IDLitToolbase class. If you are building a subclass
of the IDLitToolbase class, you have the option of adding items to or removing items
from these menus in your own class definition file.

Operations menu items — Standard data-centric operations provided as part of the
iTools distribution and which appear in all of the standard iTools are placed on the
Operations menu by the IDLitToolbase class.

Context menu items — Standard operations such as Cut, Copy, Paste, Group,
Ungroup, etc. are included on the context menu by the IDLitToolbase class.

Toolbar items — Operations that enable standard File and Edit menu functionality
are placed on the toolbar by the IDLitToolbase class. In addition, standard
manipulators (zoom, arrow, and rotate), and annotations (text, line, rectangle, oval,
polygon, and freeform) are placed on the toolbar.

File readers — All file readers included in the iTools distribution are registered by
the IDLitToolbase class. File readers do not appear in the iTool interface, but are used
automatically when importing a data file.

File writers — All file writers included in the iTools distribution are registered by the
IDLitToolbase class. File writers do not appear in the iTool interface, but are used
automatically when exporting data to a file.

Example Class Structure Definition

The following is a very simple iTool class structure definition for an iTool named
ExampleTool. This procedure should be the last procedure in a file named
exampletool__define.pro.

PRO ExampleTool__Define
struct = { ExampleTool, $

INHERITS IDLitToolbase $; Provides iTool interface
}

END
Creating a New iTool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 77
Discussion

The purpose of the structure definition routine is to define a named IDL structure
with structure fields that will contain the iTool object instance data. The structure
name should be the same as the iTool’s class name — in this case, ExampleTool.

Like many iTools, ExampleTool is created as a subclass of the IDLitToolbase class.
iTools that subclass from IDLitToolbase inherit all of the standard iTool functionality,
as described in “Subclassing from the IDLitToolbase Class” on page 75.

Note
This example is intended to demonstrate how simple it can be to create a new iTool
class definition. While the class definition for an iTool with significant extra
functionality will likely define additional structure fields, and may inherit from
other iTool classes, the basic principles are the same.
iTool Developer’s Guide Creating a New iTool Class

78 Chapter 5: Creating an iTool
Registering a New Tool Class

Before an instance of a new iTool can be created, the tool’s class definition must be
registered with the iTool system. Registering an iTool class with the system links the
class definition file containing the actual IDL code that initializes an iTool object
with a simple string that names the iTool. Since you use the name string in code that
creates instances of individual tools, a change to the name of the class definition file
requires only a change to the code that registers the iTool class.

iTool classes are registered using the ITREGISTER procedure. In most cases, the call
to the ITREGISTER procedure will be included in an iTool’s launch routine, but the
call can take place in any code at any time. If multiple iTool launch routines create
instances of the same iTool class, however, you may find it more convenient to
register the iTool in a single routine, called only once. This removes the need to call
the registration routine in each launch routine individually.

Note
If only a small number of routines will create instances of a given iTool, you may
find it more convenient to register the iTool class within the tool launch routine.

Using ITREGISTER

Use the ITREGISTER routine to register the class definition:

ITREGISTER, 'Tool Name', 'Tool_Class_Name'

where Tool Name is a string you will use to create instances of the tool, and
Tool_Class_Name is a string that specifies the name of the class file that contains the
tool’s definition.

Note
The file Tool_Class_Name__define.pro must exist somewhere in IDL’s path
for the tool definition to be successfully registered.

If a given iTool class has already been registered when the ITREGISTER routine is
called, the class will not be registered a second time. The registration can be
performed at any time in an IDL session before you attempt to create an instance of
the iTool.

See “ITREGISTER” in the IDL Reference Guide manual for details.
Registering a New Tool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 79
Example

Suppose you have an iTool class definition file named myTool__define.pro,
located in a directory included in IDL’s !PATH system variable. Register this class
with the iTool system with the following command:

ITREGISTER, 'My First Tool', 'myTool'

Tools defined by the myTool class definition file can now be created by the iTool
system by specifying the tool name My First Tool. In most cases, this command
would be included in the launch routine for the myTool iTool, but the call can be
placed in any code that is executed before the first instance of the iTool is created.
iTool Developer’s Guide Registering a New Tool Class

80 Chapter 5: Creating an iTool
Creating an iTool Launch Routine

An iTool launch routine is an IDL procedure that creates an instance of an iTool by
calling the IDLITSYS_CREATETOOL function. The launch routine may do other
things as well, including creating data objects to pass to the create function from
command-line arguments.

The process of creating an iTool launch routine is outlined in the following sections:

• “Specifying Command-Line Arguments and Keywords” on page 80

• “Creating Data Objects” on page 81

• “Handling Errors” on page 82

• “Creating an iTool Instance” on page 83

Specifying Command-Line Arguments and Keywords

If you want to be able to specify data to be loaded into your iTool when launching the
tool from the IDL command line, you must specify positional arguments or keywords
in the procedure definition. The procedure definition for an iTool launch routine may
look something like the following:

PRO myTool, A1, A2, MYKEYWORD = myKeys, IDENTIFIER = id, $
_EXTRA = _extra

Here, there are two positional parameters (or arguments) and three keyword
parameters are specified.

Arguments

Data arguments are specified in an iTool launch routine as with any IDL procedure.
See “Parameters” in Chapter 4 of the Building IDL Applications manual for details on
arguments.

Keywords

Keyword arguments to an iTool launch routine are handled as with any IDL
procedure. See “Parameters” in Chapter 4 of the Building IDL Applications manual
for details on keyword arguments. In addition, you may want to include the following
keyword arguments in the definition of the launch routine:

The IDENTIFIER Keyword

The IDENTIFIER keyword is used to return the iTool system identifier string for the
newly created tool. You must set the variable specified by the IDENTIFIER keyword
Creating an iTool Launch Routine iTool Developer’s Guide

Chapter 5: Creating an iTool 81
equal to the return value of the IDLITSYS_CREATETOOL function. This allows the
user to retrieve the newly-created iTool’s identifier in an IDL variable by including
the IDENTIFIER keyword in the call to the launch routine. The iTool identifier can
then be used to specify the iTool as the target for another operation, such as
overplotting.

The _EXTRA Keyword

Optionally, you can use IDL’s keyword inheritance mechanism to pass keyword
parameters that are not explicitly handled by your routine through to other routines.
See “Keyword Inheritance” in Chapter 4 of the Building IDL Applications manual for
details on IDL’s keyword inheritance mechanism.

Creating Data Objects

If your iTool launch routine allows users to specify data arguments (as opposed to
keywords that are passed through to the iTool component objects), you must process
those arguments and create an IDLitParameterSet object to be passed to the
IDLITSYS_CREATETOOL function. Parameter sets, data types, and general iTool
system data handling concepts are discussed in detail in Chapter 3, “Data
Management”.

Parameter Sets

Data is passed to a newly-created iTool instance by supplying an IDLitParameterSet
object as the value of the INITIAL_DATA keyword to the IDLITSYS_CREATETOOL
function. To create a parameter set object, use the OBJ_NEW function:

oParameterSet = OBJ_NEW('IDLitParameterSet', NAME = paramSetName)

where oParameterSet is a named variable that will hold the object reference to the
parameter set object and paramSetName is a string that will be used by the iTool user
interface to refer to the parameter set.

For example, if you are creating a data container to hold X and Y vectors to be plotted
in two-dimensions, you might use the following code:

oPlotData = OBJ_NEW('IDLitParameterSet', NAME = 'Plot data')

See Chapter 3, “Data Management”, and “IDLitParameterSet” in the IDL Reference
Guide manual for details.

Data Items

The parameter set object holds objects of type IDLitData, or objects of types derived
from IDLitData, such as IDLitDataImage or IDLitDataVector. These data objects, in
iTool Developer’s Guide Creating an iTool Launch Routine

82 Chapter 5: Creating an iTool
turn, hold the actual data used by the iTool. To create a data object, use the
OBJ_NEW function:

oData = OBJ_NEW('IDLitData', vData, TYPE = dataType, $
NAME = dataName)

where oData is a named variable that will hold the object reference to the data object,
vData is an IDL variable containing the actual data, dataType is a string specifying
the iTool data type of the data held by the object, and dataName is a string that will be
used by the iTool user interface to refer to the data object. See “iTool Data Types” on
page 34 for additional information on iTool data types.

For example, if you are creating a data object to hold the Y vector of a two-
dimensional plot, you might use the following code:

oPlotY = OBJ_NEW('IDLitData', yData, TYPE = 'IDLVECTOR', $
NAME = 'Y data')

Here, the data that make up the Y vector are contained in the variable yData. After a
data item has been created, it must be added to the parameter set object. Continuing
our example, the following code adds the oPlotY data object to the oPlotData
parameter set object, assigning the parameter name 'Y data':

oPlotData -> Add, oPlotY, PARAMETER_NAME='Y data'

See Chapter 3, “Data Management”, and “IDLitData” in the IDL Reference Guide
manual for details.

Example

For an example iTool launch routine that creates and populates a parameter set object,
see “Example: Simple iTool” on page 85.

Handling Errors

The error-handling requirements of your iTool launch routine will depend largely on
the type of data processing you perform. In general, your goal should be to clean up
any objects or pointers your routine creates, display an error message to the user, and
return to the calling routine. It is beyond the scope of this chapter to discuss IDL’s
error handling mechanisms in detail; for more information see Chapter 18,
“Controlling Errors” in the Building IDL Applications manual.

iTool launch routines included in the IDL distribution handle errors by placing a
block of IDL code that looks like the following at the beginning of the routine:

ON_ERROR, 2
CATCH, iErr
IF (iErr NE 0) THEN BEGIN
Creating an iTool Launch Routine iTool Developer’s Guide

Chapter 5: Creating an iTool 83
CATCH, /CANCEL
IF OBJ_VALID(oDataObject) THEN OBJ_DESTROY, oDataObject
MESSAGE, /REISSUE_LAST
RETURN

ENDIF

This block of error-handling code does the following:

1. Uses the ON_ERROR procedure to instruct IDL to return to the caller of the
program that establishes an error condition.

2. Uses the CATCH procedure to establish an error-handler for the iTool launch
routine, returning the error code in the variable iErr.

3. If the value of iErr is not 0 (that is, if an error is detected), do the following:

• Use the CATCH procedure again to cancel the error handler.

• Destroy any data objects created by the launch routine. In most cases,
destroying the data container object (represented here by oDataObject)
will be sufficient to destroy all objects added to the data container.

• Use the MESSAGE routine to display the error message in the IDL output
log.

Once these tasks have been accomplished, use the RETURN procedure to
return to the routine that called the iTool launch routine, or to the IDL Main
level, if the launch routine was invoked at the IDL command prompt.

Depending on the complexity of your iTool launch routine, additional cleanup may be
required. For example, you may need to free IDL pointers created by the launch
routine. In many cases, however, error-handling code similar to that used in the
standard iTool launch routines will be sufficiently robust.

Creating an iTool Instance

Create an instance of your iTool class by calling the IDLITSYS_CREATETOOL
function:

id = IDLITSYS_CREATETOOL('Tool Name', NAME = 'Tool Label', $
VISUALIZATION_TYPE = 'VisType', $
INITIAL_DATA = 'oDataContainer', _EXTRA = _extra)

where Tool Name is the name of a previously-registered iTool class, Tool Label is a
text label that will be used in the iTool user interface to identify this instance of the
iTool, VisType is the name of a previously-registered iTool visualization type (or array
of visualization types), and oDataContainer is an IDLitDataContainer object created
from the values specified as arguments or keywords.
iTool Developer’s Guide Creating an iTool Launch Routine

84 Chapter 5: Creating an iTool
We also use IDL’s keyword inheritance mechanism (the _EXTRA keyword) to pass
any additional keyword parameters specified when the launch routine is called
through to the lower-level iTool routines.

See “IDLITSYS_CREATETOOL” in the IDL Reference Guide manual for details.

iTool Class Registration

Before an instance of an iTool can be created, the iTool class must be registered with
the iTool system. An iTool class can be registered with the system within the launch
routine by calling the ITREGISTER routine, but you may benefit from registering
iTool classes separately. See “Registering a New Tool Class” on page 78 for details.

iTool Visualization Type Registration

Similarly, the visualization type or types specified by the VISUALIZATION_TYPE
keyword must have been registered with the system. In most cases, visualizations will
either be predefined iTool visualizations (see “Predefined iTool Visualization
Classes” on page 91) or will be registered in the iTool class’ Init method, as described
in “Creating a New iTool Class” on page 69. All iTools must have at least one
visualization type. Multiple visualization types are specified by supplying a string
array as the value of the VISUALIZATION_TYPE property.

Note
Once a visualization type has been registered with the iTool system, it is available to
all iTools launched during an IDL session. This means that the list of visualization
types available to a given iTool can change if other iTools are launched.
Creating an iTool Launch Routine iTool Developer’s Guide

Chapter 5: Creating an iTool 85
Example: Simple iTool

This example creates a very simple iTool named example1tool that incorporates
standard functionality from the iTools distribution.

Class Definition File

The class definition for the example1tool consists of an Init method and a class
structure definition routine. As with all object class definition files, the class structure
definition routine is the last routine in the file, and the file is given the same name as
the class definition routine (with the suffix .pro appended).

Init Method

FUNCTION example1tool::Init, _REF_EXTRA = _EXTRA

; Call our super class
IF (self -> IDLitToolbase::Init(_EXTRA = _extra) EQ 0) THEN $

RETURN, 0

;*** Visualizations
self -> RegisterVisualization, 'Image', 'IDLitVisImage', $

ICON = 'image', /DEFAULT

self -> RegisterVisualization, 'Colorbar', 'IDLitVisColorbar', $
ICON = 'colorbar'

;*** Insert menu
self -> RegisterOperation, 'Colorbar', 'IDLitOpInsertColorbar', $

IDENTIFIER = 'Insert/Colorbar', ICON = 'colorbar'

RETURN, 1

END

Discussion

The first item in our class definition file is the Init method. The Init method’s function
signature is defined first, using the class name example1tool. Note the use of the
_REF_EXTRA keyword inheritance mechanism; this allows any keywords specified
in a call to the Init method to be passed through to routines that are called within the
Init method even if we do not know the names of those keywords in advance.

Next, we call the Init method of the superclass. In this case, we are creating a subclass
of the IDLitToolbase class; this provides us with all of the standard iTool
functionality automatically. Any “extra” keywords specified in the call to our Init
iTool Developer’s Guide Example: Simple iTool

86 Chapter 5: Creating an iTool
method are passed to the IDLitToolbase::Init method via the keyword inheritance
mechanism.

We register two standard iTool visualization types: Image and Colorbar. Both of these
types are part of the regular iTool distribution, so we simply register the existing
classes.

We also register a standard iTool operation: Insert Colorbar. Our call to the
RegisterOperation method specifies the IDENTIFIER property as
'Insert/Colorbar', which places a Colorbar entry on the Insert menu of the
iTool.

Finally, we return the value 1 to indicate successful initialization.

Class Definition

PRO example1tool__Define

struct = { example1tool, $
INHERITS IDLitToolbase $; Provides iTool interface

}

END

Discussion

Our class definition routine is very simple. We create an IDL structure variable with
the name example1tool, specifying that the structure inherits from the
IDLitToolbase class.

Launch Routine

Our iTool launch routine also uses the class name example1tool. It accepts a single
data argument, which we assume will contain an image array. The code is shown
below:

PRO example1tool, data, IDENTIFIER = IDENTIFIER, _EXTRA = _EXTRA

nParams = N_PARAMS()

IF (nParams gt 0) THEN BEGIN
oParmSet = OBJ_NEW('IDLitParameterSet', $

NAME = 'example 1 parameters', $
ICON = 'image', $
DESCRIPTION = 'Example tool parameters')
Example: Simple iTool iTool Developer’s Guide

Chapter 5: Creating an iTool 87
IF (N_ELEMENTS(data) GT 0) THEN BEGIN
oData = OBJ_NEW("IDLitDataIDLImagePixels")
result = oData -> SetData(data, _EXTRA = _EXTRA)
oParmSet -> Add, oData, PARAMETER_NAME = "ImagePixels"

; Create a default grayscale ramp.
ramp = BINDGEN(256)
oPalette = OBJ_NEW('IDLitDataIDLPalette', $

TRANSPOSE([[ramp], [ramp], [ramp]]), $
NAME = 'Palette')

oParmSet -> Add, oPalette, PARAMETER_NAME = 'PALETTE'

ENDIF

ENDIF

ITREGISTER, "Example 1 Tool", "example1tool"

identifier = IDLITSYS_CREATETOOL("Example 1 Tool",$
VISUALIZATION_TYPE = ["Image"], $
INITIAL_DATA = oParmSet, _EXTRA = _EXTRA, $
TITLE = "First Example iTool")

END

Discussion

Our iTool launch routine accepts a single data argument. We also specify that our
launch routine should accept the IDENTIFIER keyword; we will use the variable
specified as the value of this keyword (if any) to return the iTool identifier of the new
iTool we create.

First, we check the number of non-keyword arguments that were supplied using the
N_PARAMS function. If an argument was supplied, we create an IDLitParameterSet
object to hold the data.

Next, we check to make sure the supplied data argument is not empty using the
N_ELEMENTS function. If the supplied argument contains data, we create an
IDLitDataImage object to contain the image data and add the object to our parameter
set object, assigning the parameter name 'Image'.

Note
In the interest of brevity, we do very little data verification in this example. We
could, for example, verify that the data argument contains a two-dimensional array
of a specified type.

We use the ITREGISTER procedure to register our iTool class with the name
"Example 1 Tool".
iTool Developer’s Guide Example: Simple iTool

88 Chapter 5: Creating an iTool
Finally, we call the IDLITSYS_CREATETOOL function with the registered name of
our iTool class.
Example: Simple iTool iTool Developer’s Guide

Chapter 6:

Creating a Visualization
This chapter describes the process of creating an iTool visualization type.
Overview . 90
Predefined iTool Visualization Classes 91
Creating a New Visualization Type 95

Registering a Visualization Type 110
Unregistering a Visualization Type 112
Example: Image-Contour Visualization . . 113
iTool Developer’s Guide 89

90 Chapter 6: Creating a Visualization
Overview

A visualization type is an iTool component object class that contains core IDL
graphic objects (IDLgrPlot objects, for example), other iTool visualization
components, or both. Visualization type components can also contain data. A number
of visualization types are predefined and included in the IDL iTools package; if none
of the predefined types suits your needs, you can create your own visualization type
by subclassing either from one of the predefined types or from the base
IDLitVisualization class on which all of the predefined types are based.

The Visualization Type Creation Process

To create a new iTool visualization type, you will do the following:

• Choose an iTool visualization class on which your new visualization type will
be based. In almost all cases, you will base new visualization types either on
the IDLitVisualization class or on a visualization class that is itself based on
IDLitVisualization. The IDLitVisualization class automatically handles
selection, selection visuals, data ranges, and notification of data changes.

• Define the data parameters necessary to create a visualization of the new type.

• Define the properties of the visualization, and set default property values.

• Override methods used to get or set properties, react to changes in the
underlying data, and clean up, as necessary.

This chapter describes the process of creating a new visualization type based on the
IDLitVisualization class.
Overview iTool Developer’s Guide

Chapter 6: Creating a Visualization 91
Predefined iTool Visualization Classes

The iTool system distributed with IDL includes a number of pre-defined visualization
classes. You can include these visualization classes in an iTool directly by registering
the class with your iTool (as described in “Registering a Visualization Type” on
page 110). You can also create a new visualization class based on one of the pre-
defined classes. Visualization classes are located in the lib/itools/components
subdirectory of the IDL directory.

IDLitVisAxis

Displays a single axis object.

Data Types Accepted

• None

IDLitVisColorbar

Displays a color bar.

Data Types Accepted

• Palette data: IDLPALETTE

IDLitVisContour

Displays a two-dimensional or three-dimensional contour plot.

Data Types Accepted

• Z data: IDLARRAY2D

• X and Y data: IDLVECTOR

IDLitVisHistogram

Displays a histogram plot of the input data.

Data Types Accepted

• Histogram data: IDLVECTOR, IDLARRAY2D, IDLARRAY3D

IDLitVisImage

Displays an image.
iTool Developer’s Guide Predefined iTool Visualization Classes

92 Chapter 6: Creating a Visualization
Data Types Accepted

• Image data: IDLIMAGE, IDLARRAY2D

• Palette data: IDLPALETTE, IDLARRAY2D

IDLitVisIsosurface

Displays an isosurface created from existing volume data.

Data Types Accepted

• None

IDLitVisLegend

Displays a legend that can contain multiple IDLitVisLegendContourItem,
IDLitVisLegendPlotItem, and IDLitVisLegendSurfaceItem objects.

Data Types Accepted

• None

IDLitVisLight

Places a light object in the iTool visualization window to illuminate surface and
volume objects.

Data Types Accepted

• None

IDLitVisPlot

Displays a two-dimensional line plot.

Data Types Accepted

• X and Y data: IDLVECTOR

• Vertex data: IDLARRAY2D

• X and Y error data: IDLVECTOR, IDLARRAY2D

IDLitVisPlot3D

Displays a two-dimensional line plot.

Data Types Accepted

• X, Y, and Z data: IDLVECTOR
Predefined iTool Visualization Classes iTool Developer’s Guide

Chapter 6: Creating a Visualization 93
• Vertex data: IDLARRAY2D

• X, Y, and Z error data: IDLVECTOR, IDLARRAY2D

IDLitVisPolygon

Displays a polygon annotation

Data Types Accepted

• Vertex data: IDLARRAY2D

IDLitVisPolyline

Displays a single polyline.

Data Types Accepted

• Vertex data: IDLARRAY2D

IDLitVisRoi

Defines and displays a polygonal region of interest.

Data Types Accepted

• Vertex data: IDLARRAY2D

IDLitVisSurface

Displays a three-dimensional surface plot.

Data Types Accepted

• Z (surface) data: IDLARRAY2D

• X and Y data: IDLVECTOR, IDLARRAY2D

• Vertex color data: IDLVECTOR, IDLARRAY2D

• Texture maps: IDLARRAY3D, IDLARRAY2D

• Palette colors: IDLARRAY2D

IDLitVisText

Displays text string.

Data Types Accepted

• Location data: IDLVECTOR
iTool Developer’s Guide Predefined iTool Visualization Classes

94 Chapter 6: Creating a Visualization
IDLitVisVolume

Displays a three-dimensional volume rendering.

Data Types Accepted

• Volume data: IDLARRAY3D

• Palette data: IDLPALETTE

• Opacity table data: IDLOPACITY_TABLE
Predefined iTool Visualization Classes iTool Developer’s Guide

Chapter 6: Creating a Visualization 95
Creating a New Visualization Type

An iTool visualization class definition file must (at the least) provide methods to
initialize the visualization class, get and set property values, handle changes to the
underlying data, clean up when the visualization is destroyed, and define the
visualization class structure. Complex visualization types will likely provide
additional methods.

The process of creating a visualization type is outlined in the following sections:

• “Creating an Init Method” on page 95

• “Creating a Cleanup Method” on page 102

• “Creating a GetProperty Method” on page 103

• “Creating a SetProperty Method” on page 104

• “Creating an OnDataChangeUpdate Method” on page 105

• “Creating an OnDataDisconnect Method” on page 107

• “Creating the Class Structure Definition” on page 107

Creating an Init Method

The visualization class Init method handles any initialization required by the
visualization object, and should do the following:

• define the Init function method

• call the Init methods of any superclasses

• register any data parameters used when creating visualizations of the new type

• register any properties of your visualization type, and set property attributes as
necessary

• create all the graphics objects needed by the visualization, and add them to the
visualization object

• define a custom selection visual, if desired

• perform other initialization steps as necessary

• return the value 1 if the initialization steps are successful, or 0 otherwise
iTool Developer’s Guide Creating a New Visualization Type

96 Chapter 6: Creating a Visualization
Note
While the Init method registers data parameters for a visualization, it does not
accept data parameters itself. Data parameters are set in the OnDataChangeUpdate
method.

Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method via IDL’s keyword inheritance mechanism. The
Init method for a visualization type generally looks something like this:

FUNCTION MyVisualization::Init, MYKEYWORD1 = mykeyword1, $
MYKEYWORD2 = mykeyword2, ..., _REF_EXTRA = _extra

where MyVisualization is the name of your visualization class and the MYKEYWORD
parameters are keywords handled explicitly by your Init function.

Use keyword inheritance (the _REF_EXTRA keyword) to pass keyword parameters
through to any called routines as necessary. See “Keyword Inheritance” in Chapter 4
of the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.

Superclass Initialization

The visualization class Init method should call the Init method of any required
superclass. For example, if your visualization class is based on an existing
visualization, you would call that visualization’s Init method:

success = self -> SomeVisualizationClass::Init(_EXTRA = _extra)

where SomeVisualizationClass is the class definition file for the visualization on
which your new visualization is based. The variable success will contain a 1 if the
initialization is successful.

Note
Your visualization class may have multiple superclasses. In general, each
superclass’ Init method should be invoked by your class’ Init method.

Error Checking

Rather than simply calling the superclass Init method, it is a good idea to check
whether the call to the superclass Init method succeeded. The following statement
Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 97
checks the value returned by the superclass Init method; if the returned value is 0
(indicating failure), the current Init method also immediately returns with a value of
0:

IF (self -> SomeVisualizationClass::Init() EQ 0) THEN RETURN, 0

This convention is used in all visualization classes included with IDL. RSI strongly
suggests that you include similar checks in your own class definition files.

Keywords to the Init Method

Properties of the visualization type class can be set in the Init method by specifying
the property names and values as IDL keyword-value pairs. In addition to any
keywords implemented directly in the Init method of the superclass on which you
base your class, the properties of the IDLitVisualization class are available to any
visualization class. See “IDLitVisualization Properties” in the IDL Reference Guide
manual.

Use keyword inheritance (the _EXTRA keyword) to pass keyword parameters
through to the superclass as necessary. See “Keyword Inheritance” in Chapter 4 of the
Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.

Standard Base Class

While you can create your new visualization class from any existing visualization
class, in many cases, visualization classes you create will be subclassed directly from
the base class IDLitVisualization:

IF (self -> IDLitVisualization::Init(_EXTRA = _extra) EQ 0) $
THEN RETURN, 0

The IDLitVisualization class provides the base iTool functionality used in the
visualization classes created by RSI. See “Subclassing from the IDLitVisualization
Class” on page 108 for details.

Return Value

If all of the routines and methods used in the Init method execute successfully, the
method should indicate successful initialization by returning 1. Other visualization
classes that subclass from your visualization class may check this return value, as
your routine should check the value returned by any superclass Init methods called.

Registering Parameters

Visualization types must register each data parameter used to create the visualization.
Data parameters are described in detail in Chapter 3, “Data Management”.
iTool Developer’s Guide Creating a New Visualization Type

98 Chapter 6: Creating a Visualization
Register a parameter by calling the RegisterParameter method of the IDLitParameter
class:

self -> RegisterParameter, ParmameterName, $
TYPES = ['DataType1', ..., 'DataTypeN']

where ParameterName is a string that defines the name of the parameter and the
TYPES keyword is set equal to a string or array of strings specifying the iTool system
data types the parameter can represent. See “Registering Parameters” on page 41 for
additional details.

Registering Properties

Visualization types can register properties with the iTool; registered properties show
up in the property sheet interface, and can be modified interactively by users. The
iTool property interface is described in detail in Chapter 4, “Property Management”.

Register a property by calling the RegisterProperty method of the IDLitComponent
class:

self -> RegisterProperty, PropertyIdentifier [, TypeCode] $
[, ATTRIBUTE = value]

where PropertyIdentifier is a string that uniquely identifies the property, TypeCode is
an integer between 0 and 9 specifying the property data type, and ATTRIBUTE is a
property attribute. See “Registering Properties” on page 54 for details.

Property Aggregation

IDL objects can contain other objects; a visualization type is, at one level, simply an
object container that holds the different graphics objects that make up a visualization.
The iTools property aggregation mechanism allows the properties of several different
objects held by the same container object to be displayed in the same property sheet
automatically. Without property aggregation, you would have to manually register all
of the properties of the objects contained in your visualization type object.

Aggregate the properties of contained objects using the Aggregate method of the
IDLitVisualization class:

self -> Aggregate, Object_Reference

where Object_Reference is a reference to the object whose properties you want
aggregated into the visualization object. See “Property Aggregation” on page 61 for
additional details.

Note
The IDLitVisualization::Add method includes an AGGREGATE keyword. This
keyword is simply a shorthand method of aggregating the properties of an object
Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 99
during the call to the Add method, eliminating the need to call the Aggregate
method separately. The call

self -> Add, Object_Reference, /AGGREGATE

is the same as the following two calls:

self -> Add, Object_Reference
self -> Aggregate, Object_Reference

Setting Property Attributes

If a property has already been registered, perhaps by a superclass of your
visualization class, you can change the registered attribute values using the
SetPropertyAttribute method of the IDLitComponent class:

self -> SetPropertyAttribute, Identifier

where Identifier is the name of the keyword to the GetProperty and SetProperty
methods used to retrieve or change the value of this property. (The Identifier is
specified in the call to RegisterProperty either via the PropertyName argument or the
IDENTIFIER keyword.) See “Property Attributes” on page 58 for additional details.

Adding Graphics Objects to the Visualization

An iTool visualization type must contain at least one IDLit* visualization object or
IDLgr* graphics object. To add a visualization or graphics object, you must first
create an instance of the object using the OBJ_NEW function, then add the object
instance to the visualization using the Add method of the IDLitVisualization class:

Graphics_Object = OBJ_NEW('IDLitVisObject')
self -> Add, Graphics_Object

where IDLitVisObject is an actual IDL iTool visualization class, such as
IDLitVisPlot.

In practice, you should also consider the following when adding a visualization or
graphics object to a visualization type:

• The visualization or graphics object reference should generally be placed in a
specific field of the visualization type’s class structure. This allows you access
to the object when you have the reference to the visualization object itself.

• In most cases, you will want to include the REGISTER_PROPERTIES
keyword in the call to OBJ_NEW when creating a visualization or graphics
object instance. This keyword does the work of registering all registrable
iTool Developer’s Guide Creating a New Visualization Type

100 Chapter 6: Creating a Visualization
properties of the object automatically, relieving you from the need to manually
register the properties you want to show up in the visualization’s property
sheet.

A typical addition of a graphics object to a visualization looks like this:

self._oPlot = OBJ_NEW('IDLitVisPlot', /REGISTER_PROPERTIES)
self -> Add, self._oPlot, /AGGREGATE

Here, we create a new IDLitVisPlot object instance and place the object reference in
the _oPlot field of the visualization’s class structure. The REGISTER_PROPERTIES
keyword ensures that all of the registrable IDLitVisPlot properties are registered with
the visualization automatically. Next, we use the Add method to add the object
instance to our visualization; this inserts the object into the visualization’s graphics
hierarchy. Finally, we use the AGGREGATE keyword to include all of the
IDLitVisPlot object’s registered properties in the visualization’s property sheet.

Passing Through Caller-Supplied Property Settings

If you have included the _REF_EXTRA keyword in your function definition, you can
use IDL’s keyword inheritance mechanism to pass any “extra” keyword values
included in the call to the Init method through to other routines. One of the things this
allows you to do is specify property settings when the Init method is called; simply
include each property’s keyword/value pair when calling the Init method, and include
the following in the body of the Init method:

IF (N_ELEMENTS(_extra) GT 0) THEN $
self -> MyVisualization::SetProperty, _EXTRA = _extra

where MyVisualization is the name of your visualization class. This line has the effect
of passing any “extra” keyword values to your visualization class’ SetProperty
method, where the keyword can either be handled directly or passed through to the
SetProperty methods of the superclasses of your class. See “Creating a SetProperty
Method” on page 104 for details.

Example Init Method

The following example code shows a very simple Init method for a visualization type
named ExampleVis. This function would be included (along with the class structure
definition routine and any other methods defined by the class) in a file named
examplevis__define.pro.

FUNCTION ExampleVis::Init, _REF_EXTRA = _extra

; Initialize the superclass.
IF (self -> IDLitVisualization::Init(/REGISTER_PROPERTIES, $

TYPE='ExampleVis', NAME='Example Visualization Type', $
Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 101
ICON='plot', _EXTRA = _extra) NE 1) THEN $
RETURN, 0

; Register a parameter
self -> RegisterParameter, 'Y', DESCRIPTION='Y Plot Data', $

/INPUT, TYPES='IDLVECTOR', /OPTARGET

; Add a plotting symbol object and aggregate its properties
; into the visualization.
self._oSymbol = OBJ_NEW('IDLitSymbol', PARENT = self)
self -> Aggregate, self._oSymbol

; Create an IDLitVisPlot object, setting its SYMBOL property to
; the symbol object we just created. Add the plot object to the
; visualization, and aggregate its properties.
self._oPlot = OBJ_NEW('IDLitGrPlot', /REGISTER_PROPERTIES, $

SYMBOL = self._oSymbol -> GetSymbol())
self -> Add, self._oPlot, /AGGREGATE

; Register an example property that holds a string value.
self -> RegisterProperty, 'ExampleProperty', $

/STRING, DESCRIPTION='An example property', $
NAME='Example Property', SENSITIVE = 1

; Pass any extra keyword parameters through to the SetProperty
; method.
IF (N_ELEMENTS(_extra) GT 0) THEN $

self -> ExampleVis::SetProperty, _EXTRA = _extra

; Return success
RETURN, 1

END

Discussion

The ExampleVis class is based on the IDLitVisualization class (discussed in
“Subclassing from the IDLitVisualization Class” on page 108). As a result, all of the
standard features of an iTool visualization class are already present. We don’t define
any keyword values to be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword values through to methods called
within the Init method. The ExampleVis Init method does the following things:

1. Calls the Init method of the superclass, IDLitVisualization. We use the
REGISTER_PROPERTIES keyword to ensure that all registrable properties of
the superclass are exposed in the ExampleVis object’s property sheet. We also
set the visualization type to be an “ExampleVis,” provide a Name for the
object instance, and provide an icon. Finally, we use the _EXTRA keyword
iTool Developer’s Guide Creating a New Visualization Type

102 Chapter 6: Creating a Visualization
inheritance mechanism to pass through any keywords provided when the
ExampleVis Init method is called.

2. Registers an input parameter called Y that must be a vector. The OPTARGET
keyword specifies that the Y parameter can be the target for iTool operations.

3. Creates a plotting symbol created from the IDLitSymbol class and aggregate
its properties with the other ExampleVis properties.

4. Creates an IDLitGrPlot object that uses the IDLitSymbol object for its plotting
symbols.

5. Registers an example property that holds a string value.

6. Passes any “extra” keyword properties through to the SetProperty method.

7. Returns the integer 1, indicating successful initialization.

Creating a Cleanup Method

The visualization class Cleanup method handles any cleanup required by the
visualization object, and should do the following:

• destroy any objects created by the visualization that were not added to the
graphics hierarchy with a call to the Add method

• call the superclass’ Cleanup method

Calling the superclass’ cleanup method will destroy any objects that were added to
the graphics hierarchy.

See “IDLitVisualization::Cleanup” in the IDL Reference Guide manual for additional
details.

Example Cleanup Method

The following example code shows a very simple Cleanup method for the
ExampleVis visualization type:

PRO ExampleVis::Cleanup

; Clean up the IDLitSymbol object we created.
OBJ_DESTROY, self._oSymbol

; Call superclass Cleanup method
self -> IDLitVisualization::Cleanup

END
Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 103
Discussion

The Cleanup method first destroys the IDLitSymbol object, which is not part of the
graphics hierarchy, then calls the superclass Cleanup method to destroy the objects in
the graphics hierarchy.

Creating a GetProperty Method

The visualization class GetProperty method retrieves property values from the
visualization object instance or from instance data of other associated objects. The
method can retrieve the requested property value from the visualization object’s
instance data or by calling another class’ GetProperty method.

Note
Any property registered with a call to the RegisterProperty method must be listed as
a keyword to the GetProperty method either of the visualization class or one of its
superclasses.

See “IDLitVisualization::GetProperty” in the IDL Reference Guide manual for
additional details.

Example GetProperty Method

The following example code shows a very simple GetProperty method for the
ExampleVis visualization type:

PRO ExampleVis::GetProperty, $
EXAMPLEPROPERTY = exampleProperty, $
_REF_EXTRA = _extra

IF ARG_PRESENT(exampleProperty) THEN BEGIN
exampleProperty = self._exampleproperty

ENDIF

; get superclass properties
IF (N_ELEMENTS(_extra) GT 0) THEN $

self -> IDLitVisualization::GetProperty, _EXTRA = _extra

END

Discussion

The GetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the visualization type. The keyword inheritance
mechanism allows properties to be retrieved from the ExampleVis class’ superclasses
without knowing the names of the properties.
iTool Developer’s Guide Creating a New Visualization Type

104 Chapter 6: Creating a Visualization
Using the ARG_PRESENT function, the method checks for the presence of
keywords in the call to the GetProperty method. If a keyword is detected, it retrieves
the value of the associated property from the object’s instance data. In this example,
only one property (ExampleProperty) is specific to the ExampleVis object.

Finally, the method calls the superclass’ GetProperty method, passing in all of the
keywords stored in the _EXTRA structure.

Creating a SetProperty Method

The visualization class SetProperty method stores property values in the visualization
object’s instance data or in properties of associated objects. It sets the specified
property value either by storing the value directly in the visualization object’s
instance data or by calling another class’ SetProperty method.

Note
Any property registered with a call to the RegisterProperty method must be listed as
a keyword to the SetProperty method either of the visualization class or one of its
superclasses.

See “IDLitVisualization::SetProperty” in the IDL Reference Guide manual for
additional details.

Example SetProperty Method

The following example code shows a very simple SetProperty method for the
ExampleVis visualization type:

PRO ExampleVis::SetProperty, $
EXAMPLEPROPERTY = exampleProperty, $
_EXTRA = _extra

IF (N_ELEMENTS(exampleProperty) GT 0) THEN BEGIN
self._exampleProperty = exampleProperty

ENDIF

IF (N_ELEMENTS(_extra) GT 0) THEN $
self -> IDLitVisualization::SetProperty, _EXTRA = _extra

END

Discussion

The SetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the visualization type. The keyword inheritance
Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 105
mechanism allows properties to be set on the ExampleVis class’ superclasses
without knowing the names of the properties.

Using the N_ELEMENTS function, we check to see whether a value was specified
for each keyword. If a value is detected, we set the value of the associated property. In
this example, only one property (ExampleProperty) is specific to the ExampleVis
object. We set the value of the ExampleProperty directly in the ExampleVis object’s
instance data.

Finally, we call the superclass’ SetProperty method, passing in all of the keywords
stored in the _EXTRA structure.

Creating an OnDataChangeUpdate Method

The visualization class OnDataChangeUpdate method takes care of updating the
visualization when one or more of the data parameters used to create the visualization
change their values. The tasks this method must perform are dependent on the type of
visualization involved and the data parameter that changes. The general idea is that
when the value of a data object changes, the OnDataChangeUpdate method for each
visualization that uses that data is called. The OnDataChangeUpdate method then
uses the GetData method to retrieve the changed data from the IDLitData object,
inspects the data and manipulates it as necessary, and uses the SetProperty method to
insert the new data values into the visualization object.

See “IDLitParameter::OnDataChangeUpdate” in the IDL Reference Guide manual
and “Data Update Mechanism” on page 45 for additional details.

Example OnDataChangeUpdate Method

The following example code shows a very simple OnDataChangeUpdate method for
the ExampleVis visualization type:

PRO ExampleVis::OnDataChangeUpdate, oSubject, parmName

CASE STRUPCASE(parmName) OF

'<PARAMETER SET>': BEGIN
oParams = oSubject -> Get(/ALL, COUNT = nParam, $

NAME = paramNames)
FOR i = 0, nParam-1 DO BEGIN

IF (paramNames[i] EQ '') THEN CONTINUE
oData = oSubject -> GetByName(paramNames[i])

IF (OBJ_VALID(oData)) THEN $
self -> OnDataChangeUpdate, oData, paramNames[i]

ENDFOR
END
iTool Developer’s Guide Creating a New Visualization Type

106 Chapter 6: Creating a Visualization
'Y': BEGIN
success = oSubject -> GetData(data)
nData = N_ELEMENTS(data)
IF (nData GT 0) THEN BEGIN

; Set the min/max values.
minn = MIN(data, MAX = maxx)
self._oPlot -> SetProperty, DATAY = TEMPORARY(data), $

MIN_VALUE = minn, MAX_VALUE = maxx
ENDIF

END
ELSE: self -> ErrorMessage, 'Unknown parameter'

ENDCASE

END

Discussion

The OnDataChangeUpdate method must accept two arguments: an object reference
to the data object whose data has changed (oSubject in the previous example), and
a string containing the name of the parameter associated with the data object
(parmName in the example).

Note
The string <PARAMETER SET> is a special case value for the second argument, used
to indicate that the object reference is not a single data object but a parameter set.
Calling OnDataChangeUpdate with a parameter set rather than a data item provides
a simple way to update a group of data values in with a single statement; this can be
very useful when creating the visualization for the first time.

We use a CASE statement to determine which parameter has been modified, and
process the data as appropriate. We first handle the special case where the parameter
has the value <PARAMETER SET> by looping through all of the parameters in the
parameter set object, calling the OnDataChangeUpdate method again on each
parameter.

Next, we handle the parameter (Y) by calling the IDLitData::GetData method on the
data object reference stored in the oSubject argument. The second argument (the
string 'IDLVECTOR') instructs the GetData method to retrieve only data of vector
type. We use the N_ELEMENTS function to determine whether any data was
returned. If data was returned, we determine the minimum and maximum values.
Finally, we use the SetProperty method to insert the changed data (using the
TEMPORARY function to avoid making a copy of the data) into the DATAY property
of the IDLitVisPlot object stored in the visualization’s _oPlot class structure field.
Similarly, we insert the new minimum and maximum values into the MIN_VALUE
and MAX_VALUE properties of the IDLitVisPlot object.
Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 107
Creating an OnDataDisconnect Method

The visualization class OnDataDisconnect method is called automatically when a
data value has been disconnected from a parameter. A visualization class based on the
IDLitVisualization class must implement this method in order for changes or
additions to the data parameters to be updated automatically in the resulting
visualizations. The general idea is that when a data item is disassociated from a
visualization parameter, one or more properties of the visualization may need to be
reset to reasonable default values. For example, in the case of a plot visualization, if
the plotted data is disconnected, we want to reset the data ranges to their default
values and hide the plot visualization.

See “IDLitParameter::OnDataDisconnect” in the IDL Reference Guide manual for
additional details.

Example OnDataDisconnect Method

PRO ExampleVis::OnDataDisconnect, ParmName

CASE ParmName OF
'Y': BEGIN

self._oPlot -> SetProperty, DATAX = [0,1], DATAY = [0,1]
self._oPlot -> SetProperty, /HIDE

END

ELSE:
ENDCASE

END

Discussion

The OnDataDisconnect method takes a single argument, which contains the upper-
case name of the parameter that was disconnected. In the case of our ExampleVis
visualization, we only need to handle the Y parameter. If the Y parameter is
disconnected, we set the data ranges of the plot object to their default values (the
range between 0 and 1), and hide the plot visualization using the HIDE property.

Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
data types of those fields. The object class structure must have been defined before
any objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure
iTool Developer’s Guide Creating a New Visualization Type

108 Chapter 6: Creating a Visualization
named ObjectClass__define (where ObjectClass is the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle” in Chapter 22 of the Building IDL Applications manual.

Subclassing from the IDLitVisualization Class

The IDLitVisualization class serves as a container for visualization objects displayed
in an iTool. The class includes methods to handle changes to data and property values
automatically; in almost all cases, new visualization types will be subclassed from the
IDLitVisualization class. See “IDLitVisualization” in the IDL Reference Guide
manual for details on the methods properties available to classes that subclass from
IDLitVisualization.

Example Class Structure Definition

The following is the class structure definition for the ExampleVis visualization
class. This procedure should be the last procedure in a file named
examplevis__define.pro.

PRO ExampleVis__Define

struct = { ExampleVis, $
INHERITS IDLitVisualization, $
_oPlot: OBJ_NEW(), $
_oSymbol: OBJ_NEW(), $
_exampleProperty: '' $

}

END

Discussion

The purpose of the structure definition routine is to define a named IDL structure
with structure fields that will contain the visualization object instance data. The
structure name should be the same as the visualization’s class name — in this case,
ExampleVis.

Like many iTool visualizations, ExampleVis is created as a subclass of the
IDLitVisualization class. Visualization classes that subclass from the
IDLitVisualization class inherit all of the standard iTool visualization features, as
described in “Subclassing from the IDLitVisualization Class” on page 108.

The ExampleVis visualization class instance data includes two graphics objects: an
IDLitVisPlot object, to which a reference is stored in the _oPlot class structure field,
and an IDLitVisSymbol object, to which a reference is stored in the _oSymbol class
Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 109
structure field. Both graphics objects are defined in the class structure definitions as
object instances, denoted by the presence of the OBJ_NEW() after the structure field
name. Finally, instance data for a string property named ExampleProperty is
stored in the _exampleProperty class structure field.

Note
This example is intended to demonstrate how simple it can be to create a new
visualization class definition. While the class definition for a visualization class
with significant extra functionality will likely define additional structure fields, and
may inherit from other iTool classes, the basic principles are the same.
iTool Developer’s Guide Creating a New Visualization Type

110 Chapter 6: Creating a Visualization
Registering a Visualization Type

Before a visualization of a given type can be created by an iTool, the visualization
type’s class definition must be registered as being available to the iTool. Registering a
visualization type with the iTool links the class definition file containing the actual
IDL code that defines the visualization type with a simple string that names the type.
Code that creates a visualization in an iTool uses the name string to specify which
type of visualization should be created. In addition, some operations and
manipulators will operate only on specific visualization types; these limits are also
specified using the name string.

Using IDLitTool::RegisterVisualization

In most cases, you will register a visualization type with the iTool in the iTool’s class
Init method. Registration ensures that the visualization type is available when the
iTool attempts to create a visualization. (See “Creating a New iTool Class” on
page 69 for details on the iTool class Init method.)

To register a visualization, call the IDLitTool::RegisterVisualization method:

self -> RegisterVisualization, Visualization_Type, $
VisType_Class_Name

where Visualization_Type is the string you will use when referring to the visualization
type, and VisType_Class_Name is a string that specifies the name of the class file that
contains the visualization type’s definition.

Note
The file VisType_Class_Name__define.pro must exist somewhere in IDL’s
path for the visualization type to be successfully registered.

See “IDLitTool::RegisterVisualization” in the IDL Reference Guide manual for
details.

Specifying Useful Properties

You can set any property of the IDLitVisualization and IDLitComponent classes
when registering a visualization. The following properties may be of particular
interest:
Registering a Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 111
ICON

A string value giving the name of an icon to be associated with this object. Typically,
this property is the name of a bitmap file to be used when displaying the object in a
tree view. See “Icon Bitmaps” on page 28 for details on where bitmap icon files are
located.

TYPE

A string or an array of strings indicating the types of data that can be displayed by the
visualization. iTools data types are described in Chapter 3, “Data Management”. Set
this property to a null string ('') to specify that all types of data can be displayed.
iTool Developer’s Guide Registering a Visualization Type

112 Chapter 6: Creating a Visualization
Unregistering a Visualization Type

If you are creating a new iTool from an existing iTool class, you may want to remove
a visualization type registered with the existing class from your new tool. This can be
useful if you have an iTool class that implements all of the functionality you need, but
which registers a visualization type you don’t want included in your iTool. Rather
than recreating the iTool class to remove the visualization type, you could create your
new iTool class in such a way that it inherits from the existing iTool class, but
unregisters the unwanted visualization.

Unregister a visualization type by calling the IDLitTool::UnregisterVisualization
method in the Init method of your iTool class:

self -> UnregisterVisualization, identifier

where identifier is the string name used when registering the visualization.

For example, suppose you are creating a new iTool that subclasses from the standard
iSurface tool, which is defined by the IDLitToolSurface class. If you wanted your
new tool to behave just like the iSurface tool, with the exception that it would not
handle 2D plot visualizations, you could include the following method call in your
iTool’s Init method:

self -> UnregisterVisualization, 'Plot'

Finding the Identifier String

To find the string value used as the identifier parameter to the UnregisterVisualization
method, you must inspect the class file that registers the visualization. In the case of
our example, you would inspect the file idlittoolsurface__define.pro to find
the following call to the RegisterVisualization method:

self -> RegisterVisualization, 'Plot', 'IDLitVisPlot', $
ICON = 'plot'

The first argument to the RegisterVisualization method ('Plot') is the string name
of the visualization type.
Unregistering a Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 113
Example: Image-Contour Visualization

This example creates a visualization type named visImageContour that displays an
image and overlays it with a contour based on the image data.

Class Definition File

The class definition for visImageContour consists of an Init method, an
OnDataChangeUpdate method, and a class structure definition routine. Other
important methods — Cleanup, GetProperty, and SetProperty — are handled by the
superclass (IDLitVisualization).

As with all object class definition files, the class structure definition routine is the last
routine in the file, and the file is given the same name as the class definition routine
(with the suffix .pro appended).

Init Method

The Init method is called when the visImageContour visualization is created.

FUNCTION visImageContour::Init, _EXTRA = _extra

; Initialize the superclass
IF (~self -> IDLitVisualization::Init(NAME='visImageContour', $

ICON = 'image', _EXTRA = _extra)) THEN RETURN, 0

; Register the parameters we are using FOR data
self -> RegisterParameter, 'IMAGEPIXELS', $

DESCRIPTION = 'Image Data', /INPUT, $
TYPES = ['IDLIMAGEPIXELS', 'IDLARRAY2D'], /OPTARGET

self -> RegisterParameter, 'PALETTE', $
DESCRIPTION = 'Palette', /INPUT, /OPTIONAL, $
TYPES = ['IDLPALETTE','IDLARRAY2D'], /OPTARGET

; Create objects and add to this Visualization
self._oImage = OBJ_NEW('IDLitVisImage', _EXTRA = _extra)
self -> Add, self._oImage, /AGGREGATE
self._oContour = OBJ_NEW('IDLitVisContour', _EXTRA = _extra)
self -> Add, self._oContour, /AGGREGATE

; Return success
RETURN, 1

END
iTool Developer’s Guide Example: Image-Contour Visualization

114 Chapter 6: Creating a Visualization
Discussion

The first item in our class definition file is the Init method. The Init method’s function
signature is defined first, using the class name visImageContour. Note the use of
the _EXTRA keyword inheritance mechanism; this allows any keywords specified in
a call to the Init method to be passed through to routines that are called within the Init
method even if we do not know the names of those keywords in advance.

First, we call the Init method of the superclass. In this case, we are creating a subclass
of the IDLitVisualization class; this provides us with all of the standard iTool
visualization methods automatically. Any “extra” keywords specified in the call to
our Init method are passed to the IDLitVisualization::Init method via the keyword
inheritance mechanism. If the call to the superclass Init method fails, we return
immediately with a value of 0.

We register two parameters used by our visualization: IMAGEPIXELS and PALETTE.
Both parameters are input parameters (meaning they are used to create the
visualization), and both can be the target of an operation. The IMAGEPIXELS
parameter can contain data of two iTool data types: IDLIMAGEPIXELS or
IDLARRAY2D. When data are assigned to the visualization’s parameter set, only data
that matches one of these two types can be assigned to the IMAGEPIXELS parameter.
Similarly, the PALETTE parameter can contain data of type IDLPALETTE or
IDLARRAY2D.

Next, we create the two visualization components that make up the visImageContour
visualization type: an IDLitVisImage object and an IDLitVisContour object. Each
object is created by a call to the OBJ_NEW function; the newly-created object
reference is placed in a field of the visImageContour object’s instance data structure.
The new visualization objects are then added to the visImageContour object using the
Add method; the AGGREGATE keyword specifies that the properties of each of the
component visualization objects will be displayed as properties of the
visImageContour object itself.

Finally, we return 1, indicating a successful initialization.

OnDataChangeUpdate Method

The OnDataChangeUpdate method is called whenever the data associated with the
visImageContour visualization object changes. This may include the initial creation
of the visualization, if data parameters are specified in the call to the iTool launch
routine that creates the visualization.
Example: Image-Contour Visualization iTool Developer’s Guide

Chapter 6: Creating a Visualization 115
PRO visImageContour::OnDataChangeUpdate, oSubject, parmName, $
_REF_EXTRA = _extra

; Branch based on the value of the parmName string.
CASE STRUPCASE(parmName) OF

; The method was called with a paramter set as the argument.
'<PARAMETER SET>': BEGIN
oParams = oSubject -> Get(/ALL, COUNT = nParam, $

NAME = paramNames)
FOR i = 0, nParam-1 DO BEGIN

IF (paramNames[i] EQ '') THEN CONTINUE
oData = oSubject -> GetByName(paramNames[i])

IF (OBJ_VALID(oData)) THEN $
self -> OnDataChangeUpdate, oData, paramNames[i]

ENDFOR
END

; The method was called with an image array as the argument.
'IMAGEPIXELS': BEGIN
void = self._oImage -> SetData(oSubject, $

PARAMETER_NAME = 'IMAGEPIXELS')
void = self._oContour -> SetData(oSubject, $

PARAMETER_NAME = 'Z')
; Make our contour appear at the top OF the surface.
IF (oSubject -> GetData(zdata)) THEN $

self._oContour -> SetProperty, ZVALUE = MAX(zdata)
END

; The method was called with a palette as the argument.
'PALETTE': BEGIN
void = self._oImage -> SetData(oSubject, $

PARAMETER_NAME = 'PALETTE')
void = self._oContour -> SetData(oSubject, $

PARAMETER_NAME = 'PALETTE')
END

ELSE: ; DO nothing

ENDCASE

END

Discussion

The OnDataChangeUpdate method accepts the two required arguments: an object
reference to the data object whose data has changed (oSubject), and a string
containing the name of the parameter associated with the data object (parmName).
iTool Developer’s Guide Example: Image-Contour Visualization

116 Chapter 6: Creating a Visualization
We use a CASE statement to determine which parameter has been modified, and
process the data as appropriate. We first handle the special case where the parameter
has the value <PARAMETER SET> by looping through all of the parameters in the
parameter set object, calling the OnDataChangeUpdate method again on each
parameter.

We handle the IMAGEPIXELS parameter by calling the IDLitParameter::SetData
method once on each of the two component visualizations, specifying that the input
data object oSubject corresponds to the IMAGEPIXELS parameter of the
IDLitVisImage object, and to the Z parameter of the IDLitVisContour object. We also
set the Z value of the IDLitVisContour object using the maximum data value of the
data contained in oSubject.

Finally, we handle the PALETTE parameter by calling the SetData method again, this
time to set the PALETTE parameters of both the IDLitVisImage and IDLitVisContour
objects.

OnDataDisconnect Method

The OnDataDisconnect method is called automatically when a data value has been
disconnected from a parameter.

PRO visImageContour::OnDataDisconnect, ParmName

CASE STRUPCASE(parmname) OF

'IMAGEPIXELS': BEGIN
self -> SetProperty, DATA = 0
self._oImage -> SetProperty, /HIDE
self._oContour -> SetProperty, /HIDE

END

'PALETTE': BEGIN
self._oImage -> SetProperty, PALETTE = OBJ_NEW()
self -> SetPropertyAttribute, 'PALETTE', SENSITIVE = 0

END

ELSE: ; DO nothing
ENDCASE

END

Discussion

The OnDataDisconnect method takes a single argument, which contains the name of
the parameter that was disconnected. In the case of our visImageContour
visualization, we handle the IMAGEPIXELS and PALETTE parameters. For the
Example: Image-Contour Visualization iTool Developer’s Guide

Chapter 6: Creating a Visualization 117
IMAGEPIXELS parameter, we set the DATA property of the parameter to 0, and hide
both the image and the contour visualizations. For the PALETTE parameter, we set the
PALETTE property of the image to a null object, and desensitize the property in the
property sheet display.

Class Definition

PRO visImageContour__Define
struct = { visImageContour, $

inherits IDLitVisualization, $
_oContour: OBJ_NEW(), $
_oImage: OBJ_NEW() $

}
END

Discussion

Our class definition routine creates an IDL structure variable with the name
visImageContour, specifying that the structure inherits from the
IDLitVisualization class. The structure has two instance data fields named
_oContour and _oImage, which will contain object references to the
IDLitVisImage and IDLitVisContour objects that make up the visImageContour
visualization.
iTool Developer’s Guide Example: Image-Contour Visualization

118 Chapter 6: Creating a Visualization
Example: Image-Contour Visualization iTool Developer’s Guide

Chapter 7:

Creating an Operation
This chapter describes the process of creating an iTool operation.
Overview . 120
Predefined iTool Operations 122
Operations and the Undo/Redo System . . . 123
Creating a New Data-Centric Operation . . 125

Creating a New Generalized Operation . . 138
Registering an Operation 153
Unregistering an Operation 155
Example: Data Resample Operation 156
iTool Developer’s Guide 119

120 Chapter 7: Creating an Operation
Overview

An operation is an iTool component object class that can be used to modify selected
data, change the way a visualization is displayed in the iTool window, or otherwise
affect the state of the iTool. Some examples of iTool operations are:

• performing the IDL SMOOTH operation on selected data,

• rotating a selected visualization by a specified angle,

• displaying data statistics.

A number of standard operations are predefined and included in the IDL iTools
package; if none of the predefined operations suits your needs, you can create your
own operation by subclassing either from the base IDLitOperation class on which all
of the predefined operations are based, from the IDLitDataOperation class, or from
one of the predefined operations.

The Operation Creation Process

To create a new iTool operation, you will do the following:

• Choose an iTool operation class on which your new operation will be based. In
most cases, the operation will act on the data underlying a visualization; in
these cases, you will base your new operation on the IDLitDataOperation
class. If your operation will affect something other than data — the appearance
of visualizations in the iTool window, or the value of some property — you
will base your new class on the IDLitOperation class. Both classes provide
support for the iTool undo/redo system, but operations that do not deal directly
with data require additional code to properly allow for undoing and redoing the
operations.

• Define the properties of the operation, and set default property values.

• If the new operation acts directly on data (that is, if it is based on the
IDLitDataOperation class), provide an Execute method that performs the
operation using the current property values. Similarly, if the new operation is
more general and is based on the IDLitOperation class, provide a DoAction
method.

• Optionally provide a DoExecuteUI method to display a user interface for
operations that act directly on data.

• For generalized operations, provide UndoOperation and RedoOperation
methods to undo and redo the operation. These methods may in turn require
Overview iTool Developer’s Guide

Chapter 7: Creating an Operation 121
that you provide methods to store values before and after the operation is
executed.

• Override methods used to get or set properties, react to changes in the
underlying data, and clean up, as necessary.

This chapter describes the process of creating new operations based on the
IDLitDataOperation and IDLitOperation classes.
iTool Developer’s Guide Overview

122 Chapter 7: Creating an Operation
Predefined iTool Operations

The iTool system distributed with IDL includes a number of pre-defined operations.
You can include these operations in an iTool directly by registering the class with
your iTool (as described in “Registering an Operation” on page 153). You can also
create a new operation class based on one of the pre-defined classes.

IDLitOpBytscl

Scales the values contained in a two-dimensional array into the range of 0-255

Data Types Accepted

• IDLARRAY2D

IDLitOpConvolution

Displays a dialog that allows the user to choose convolution settings, then calls the
CONVOL function on the selected data using the specified parameters.

Data Types Accepted

• IDLVECTOR, IDLARRAY2D, IDLIMAGE

IDLitOpCurvefitting

Displays a dialog that allows the user to select a curve-fitting algorithm, then calls the
appropriate IDL routine to perform the fit. The fitted curve is then created and
inserted into the visualization as a new plot line.

Data Types Accepted

• IDLVECTOR

IDLitOpSmooth

Calls the SMOOTH function on the selected data. The smoothing window parameter
can be set by the user via the property sheet interface of the Operations browser.

Data Types Accepted

• IDLVECTOR, IDLARRAY2D
Predefined iTool Operations iTool Developer’s Guide

Chapter 7: Creating an Operation 123
Operations and the Undo/Redo System

The iTools system provides users with the ability to interactively undo and redo
actions performed on visualizations or data items. As an iTool developer, you will
need to provide some code to support the undo/redo feature; the amount of code
required depends largely on the type of operation your operation class performs. The
main dividing line is between data-centric operations that act directly on the data that
underlies a visualization, and operations that act in a more generalized way, changing
some value that may not be directly related to a data item. In most cases, operations
that act directly on data are based on the IDLitDataOperation class, whereas
operations that are more generalized are based on the IDLitOperation class.

Data-Centric Operations

Undo/redo functionality is handled automatically for data-centric operations based on
the IDLitDataOperation class. The following things happen when the user requests an
operation:

• For each selected item, data that matches the type supported by the operation is
extracted and passed to the operation’s Execute method. The Execute method
modifies the data in place. When the data changes, all visualizations that
observe the data item are notified, and update accordingly.

• If the user undoes the operation, the original data values are restored. By
default, the original values are cached before the Execute method is called, and
undoing the operation simply retrieves the data values from the cache. If the
REVERSIBLE_OPERATION property of the IDLitDataOperation object is
set, however, the original values are not cached, and the UnExecute method is
called when the user undoes the operation. The UnExecute method must exist
and must reverse the action performed by the Execute method, restoring the
data items to their original values. Using the REVERSIBLE_OPERATION
property allows you to avoid caching the data set (which may be large) when
the operation performed on the data is easily reversed by computation.

• If the user redoes the operation, the data values computed by the Execute
method are restored. By default, the Execute method is simply called again. If
the EXPENSIVE_OPERATION property of the IDLitDataOperation object is
set, however, the computed values are cached after the Execute method is
called, and redoing the operation simply restores the cached data values. Using
the EXPENSIVE_OPERATION property allows you to avoid having to
recompute a computationally-intensive operation each time the user undoes
and then redoes the operation.
iTool Developer’s Guide Operations and the Undo/Redo System

124 Chapter 7: Creating an Operation
Generalized Operations

To provide undo/redo functionality, generalized operations (those based on the
IDLitOperation class) must provide methods that record the initial and final values of
the item being modified, along with methods that use the recorded values to undo or
redo the operation. The following things happen when the user requests an operation:

• The DoAction method creates an IDLitCommandSet object to hold the initial
and final values.

• The RecordInitialValues method records the original values of the specified
target objects. Values are stored as data items in IDLitCommand objects,
which are in turn stored in the IDLitCommandSet object.

• The RecordFinalValues method retrieves the IDLitCommand objects created
by the RecordInitialValues method from the IDLitCommandSet object, and
records the new values of the target objects as additional items in those
IDLitCommand objects.

• If the user undoes the operation, the UndoOperation method retrieves the
IDLitCommand objects from the IDLitCommandSet object, selects the
relevant data items from each, and restores the values.

• If the user redoes the operation, the RedoOperation method retrieves the
IDLitCommand objects from the IDLitCommandSet object, selects the
relevant data items from each, and restores the values.
Operations and the Undo/Redo System iTool Developer’s Guide

Chapter 7: Creating an Operation 125
Creating a New Data-Centric Operation

iTool operations that act primarily on data are based on the IDLitDataOperation class.
The class definition file for an IDLitDataOperation object must (at the least) provide
methods to initialize the operation class, get and set property values, execute the
operation, and define the operation class structure. Complex operations will likely
provide additional methods.

How an IDLitDataOperation Works

When an IDLitDataOperation is requested by a user, the following things occur:

1. As with any operation, execution commences when the DoAction method is
called. When called, the IDLitDataOperation retrieves the currently-selected
items. If nothing is selected, the operation returns.

2. For each selected item, the data objects of the parameters registered as
“operation targets” are retrieved.

3. The data objects are queried for iTool data types that match the types supported
by the IDLitDataOperation.

For each data object that includes data of an iTool data type supported by the
IDLitDataOperation, the following things occur:

1. The data from the data object is retrieved.

2. If the IDLitDataOperation does not have the REVERSIBLE_OPERATION
property set, a copy of the data is created and placed into the undo-redo
command set.

3. The Execute method is called, with the retrieved data as its argument.

4. If the Execute method succeeds and the IDLitDataOperation has the
EXPENSIVE_OPERATION property set, a copy of the results is placed into
the undo-redo command set.

5. The result of the IDLitDataOperation is placed in the data object. This action
will cause all visualization items that use the data object to update when the
operation is completed.

Once all selected data items have been processed, the undo-redo command set is
placed into the system undo-redo buffer for later use.
iTool Developer’s Guide Creating a New Data-Centric Operation

126 Chapter 7: Creating an Operation
Creating an IDLitDataOperation

The process of creating an IDLitDataOperation is outlined in the following sections:

• “Creating an Init Method” on page 126

• “Creating a Cleanup Method” on page 130

• “Creating an Execute Method” on page 131

• “Creating a DoExecuteUI Method” on page 132

• “Creating a GetProperty Method” on page 133

• “Creating a SetProperty Method” on page 134

• “Creating an UndoExecute Method” on page 135

• “Creating the Class Structure Definition” on page 136

Creating an Init Method

The operation class Init method handles any initialization required by the operation
object, and should do the following:

• define the Init function method

• call the Init methods of any superclasses

• register any properties of the operation, and set property attributes as necessary

• perform other initialization steps as necessary

• return the value 1 if the initialization steps are successful, or 0 otherwise

Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method via IDL’s keyword inheritance mechanism.

Note
Because iTool operations are invoked by the user’s interactive choice of an item
from a menu, they generally do not accept any keywords of their own.
Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 127
The function signature of an Init method for an operation generally looks something
like this:

FUNCTION MyOperation::Init, _EXTRA = _extra

where MyOperation is the name of your operation class.

Use keyword inheritance (the _EXTRA keyword) to pass keyword parameters
through to any called routines as necessary. (See “Keyword Inheritance” in Chapter 4
of the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.)

Superclass Initialization

The operation class Init method should call the Init method of any required
superclass. For example, if your operation class is based on an existing operation, you
would call that operation’s Init method:

success = self -> SomeOperationClass::Init(_EXTRA = _extra)

where SomeOperationClass is the class definition file for the operation on which
your new operation is based. The variable success contains a 1 if the initialization
was successful.

Note
Your operation class may have multiple superclasses. In general, each superclass’
Init method should be invoked by your class’ Init method.

Error Checking

Rather than simply calling the superclass Init method, it is a good idea to check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method; if the returned value is 0
(indicating failure), the current Init method also immediately returns with a value of
0:

IF (self -> SomeOperationClass::Init() EQ 0) THEN RETURN, 0

This convention is used in all operation classes included with IDL. RSI strongly
suggests that you include similar checks in your own class definition files.

Keywords to the Init Method

Properties of the operation class can be set in the Init method by specifying the
property names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitOperation class and the IDLitComponent class are
iTool Developer’s Guide Creating a New Data-Centric Operation

128 Chapter 7: Creating an Operation
available to any operation class. See “IDLitOperation Properties” and
“IDLitComponent Properties” in the IDL Reference Guide manual.

Use keyword inheritance (the _EXTRA keyword) to pass keyword parameters
through to the superclass as necessary. (See “Keyword Inheritance” in Chapter 4 of
the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.)

Standard Base Class

While you can create your new operation class from any existing operation class, in
many cases, data-centric operation classes you create will be subclassed directly from
the base class IDLitDataOperation:

IF (self -> IDLitDataOperation::Init(_EXTRA = _extra) EQ 0) $
THEN RETURN, 0

The IDLitDataOperation class provides the base iTool functionality used in the data-
centric operation classes created by RSI. See “Subclassing from the
IDLitDataOperation Class” on page 136 for details.

Return Value

If all of the routines and methods used in the Init method execute successfully, it
should indicate successful initialization by returning 1. Other operation classes that
subclass from your operation class may check this return value, as your routine
should check the value returned by any superclass Init methods called.

Registering Properties

Operations can register properties with the iTool; registered properties show up in the
property sheet interface, and can be modified interactively by users. The iTool
property interface is described in detail in Chapter 4, “Property Management”.

Register a property by calling the RegisterProperty method of the IDLitComponent
class:

self -> RegisterProperty, PropertyIdentifier [, TypeCode] $
[, ATTRIBUTE = value]

where PropertyIdentifier is a string that uniquely identifies the property, TypeCode is
an integer between 0 and 9 specifying the property data type, and ATTRIBUTE is a
property attribute. See “Registering Properties” on page 54 for details.
Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 129
Setting Property Attributes

If a property has already been registered, perhaps by a superclass of your operation
class, you can change the registered attribute values using the SetPropertyAttribute
method of the IDLitComponent class:

self -> SetPropertyAttribute, Identifier

where Identifier is the name of the keyword to the GetProperty and SetProperty
methods used to retrieve or change the value of this property. (The Identifier is
specified in the call to RegisterProperty either via the PropertyName argument or the
IDENTIFIER keyword.) See “Property Attributes” on page 58 for additional details.

Example Init Method

The following example code shows a very simple Init method for an operation named
ExampleDataOp. This function would be included (along with the class structure
definition routine and any other methods defined by the class) in a file named
exampledataop__define.pro.

FUNCTION ExampleDataOp::Init, _EXTRA = _extra

; Initialize the superclass.
IF (self -> IDLitDataOperation::Init(TYPES=['IDLIMAGE'], $

NAME='Example Data Operation', ICON='sum', $
_EXTRA = _extra) NE 1) THEN $

RETURN, 0

; Register a property that holds a byte value.
self -> RegisterProperty, 'ByteTop', $

DESCRIPTION='An example property', $
NAME='Byte Threshold', SENSITIVE = 1

; Return success
RETURN, 1

END

Discussion

The ExampleDataOp class is based on the IDLitDataOperation class (discussed in
“Subclassing from the IDLitDataOperation Class” on page 136). As a result, all of
the standard features of an iTool data operation are already present. We don’t define
any keyword values to be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword values through to methods called
within the Init method. The ExampleDataOp Init method does the following things:
iTool Developer’s Guide Creating a New Data-Centric Operation

130 Chapter 7: Creating an Operation
1. Calls the Init method of the superclass, IDLitDataOperation. We use the
TYPES keyword to specify that our operation works on data that has the iTool
data type 'IDLIMAGE', provide a name for the object instance, and provide an
icon. Finally, we use the _EXTRA keyword inheritance mechanism to pass
through any keywords provided when the ExampleDataOp Init method is
called.

2. Registers a property that holds a byte value.

3. Returns the integer 1, indicating successful initialization.

Creating a Cleanup Method

The operation class Cleanup method handles any cleanup required by the operation
object, and should do the following:

• destroy any pointers or objects created by the operation

• call the superclass’ Cleanup method

Calling the superclass’ cleanup method will destroy any objects created when the
superclass was initialized.

Note
If your operation class is based on the IDLitDataOperation class, and does not
create any pointers or objects of its own, the Cleanup method is not strictly
required. It is always safest, however, to create a Cleanup method that calls the
superclass’ Cleanup method.

See “IDLitDataOperation::Cleanup” in the IDL Reference Guide manual for
additional details.

Example Cleanup Method

The following example code shows a very simple Cleanup method for the
ExampleDataOp operation:

PRO ExampleDataOp::Cleanup

;; Cleanup superclass
self -> IDLitDataOperation::Cleanup

END
Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 131
Discussion

Since our operation’s instance data does not include any pointers or object references,
the Cleanup method simply calls the superclass Cleanup method.

Creating an Execute Method

The operation class Execute method does the computational work of a data-centric
operation; it is called automatically when the iTool user requests an operation based
on the IDLitDataOperation class. The Execute method must accept a single argument
that contains the raw data associated with an item selected by the user.

The fact that the raw data is passed to the execute method means that the Execute
method itself does not need to “unpack” a data object before performing the
operations, allowing rapid and simple operation execution. For example, if the
operation expects data of the iTools data type IDLARRAY2D, the iTool system will
include the selected two-dimensional array as the Data argument.

The actual processing performed by the Execute method depends entirely on the
operation.

Example Execute Method

The following example code shows a simple Execute method for the
ExampleDataOp operation, which will invert the values of the supplied data. Since
our ExampleDataOp operation works on image data, this means the operation has the
effect of producing the negative image.

FUNCTION ExampleDataOp::Execute, data

; If byte data then offsets are 0 and 255, otherwise
; use data minimum and maximum.
offsetMax = (SIZE(data, /TYPE) eq 1) ? 255b : MAX(data)
offsetMin = (SIZE(data, /TYPE) eq 1) ? 0b : MIN(data)
data = offsetMax - TEMPORARY(data) + offsetMin
RETURN, 1

END

Discussion

When our ExampleDataOp operation is invoked by a user, the iTool system
automatically checks to see which items are selected in the visualization window. For
each selection, the iTool system extracts any data of type IDLIMAGE and passes that
data to the Execute method as an IDL array. Our Execute method then finds the
minum and maximum values, and inverts the data values.
iTool Developer’s Guide Creating a New Data-Centric Operation

132 Chapter 7: Creating an Operation
Creating a DoExecuteUI Method

Suppose we want to collect some information from the user before executing our
operation. If the operation class sets the SHOW_EXECUTION_UI property, the
iTool system will call the DoExecuteUI method before calling the Execute method.
The DoExecuteUI method is responsible for displaying a user interface that collects
the appropriate information and storing that information in properties of the operation
object.

Note
iTools provided with IDL that need to collect user input in this manner use the
UI service mechanism, described in Chapter 10, “iTool User Interface
Architecture”. While it is possible for the DoExecuteUI method to perform all the
necessary functions directly, using a UI service is the preferred method.

Example DoExecuteUI Method

The following example code shows a simple DoExecuteUI method for the
ExampleDataOp operation. This method relies on a UI service named
'ExampleDataOp' being registered with the current iTool.

FUNCTION ExampleDataOp::DoExecuteUI

oTool = self -> GetTool()
IF (oTool EQ OBJ_NEW()) THEN RETURN, 0

RETURN, oTool -> DoUIService('ExampleDataOp', self)

END

Discussion

If the SHOW_EXECUTION_UI property is set on our ExampleDataOp operation
object, the DoExecuteUI method is called automatically when the user invokes the
operation. This method does the following:

1. Retrieve a reference to the current iTool object using the GetTool method of
the IDLitIMessaging class. (IDLitIMessaging is a superclass of
IDLitOperation, and thus of IDLitDataOperation.)

2. If the retrieved iTool object reference is a null object reference, no data about
the current tool is available, so we return immediately without calling the UI
service.
Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 133
3. Call the ExampleDataOp UI service. Since our ExampleDataOp operation has
only one property of its own (ByteTop), the ExampleDataOp UI presumably
allows the user to set this value. See Chapter 12, “Creating a User Interface
Service” for discussion of UI services.

Creating a GetProperty Method

The operation class GetProperty method retrieves property values from the operation
object instance or from instance data of other associated objects. It should retrieve the
requested property value, either from the operation object’s instance data or by
calling another class’ GetProperty method.

Note
Any property registered with a call to the RegisterProperty method must be listed as
a keyword to the GetProperty method either of the operation class or one of its
superclasses.

See “IDLitDataOperation::GetProperty” in the IDL Reference Guide manual for
additional details.

Example GetProperty Method

The following example code shows a very simple GetProperty method for the
ExampleDataOp operation:

PRO ExampleDataOp::GetProperty, $
BYTETOP = byteTop, _REF_EXTRA = _extra

IF ARG_PRESENT(byteTop) THEN BEGIN
byteTop = self._byteTop

ENDIF

; get superclass properties
IF (N_ELEMENTS(_extra) GT 0) THEN $

self -> IDLitDataOperation::GetProperty, _EXTRA = _extra

END

Discussion

The GetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the operation type. The keyword inheritance
mechanism allows properties to be retrieved from the ExampleDataOp class’
superclasses without knowing the names of the properties.
iTool Developer’s Guide Creating a New Data-Centric Operation

134 Chapter 7: Creating an Operation
Using the ARG_PRESENT function, we check for the presence of keywords in the
call to the GetProperty method. If a keyword is detected, we retrieve the value of the
associated property. In this example, only one property (ByteTop) is specific to the
ExampleDataOp object. We retrieve the value of the ByteTop property directly from
the ExampleDataOp object’s instance data.

Finally, we call the superclass’ GetProperty method, passing in all of the keywords
stored in the _EXTRA structure.

Creating a SetProperty Method

The operation class SetProperty method stores property values in the operation
object’s instance data or in properties of associated objects. It should set the specified
property value, either by storing the value directly in the operation object’s instance
data or by calling another class’ SetProperty method.

Note
Any property registered with a call to the RegisterProperty method must be listed as
a keyword to the SetProperty method either of the operation class or one of its
superclasses.

See “IDLitDataOperation::SetProperty” in the IDL Reference Guide manual for
additional details.

Example SetProperty Method

The following example code shows a very simple SetProperty method for the
ExampleDataOp operation:

PRO ExampleDataOp::SetProperty, BYTETOP = byteTop, $
_REF_EXTRA = _extra

If (N_ELEMENTS(byteTop) GT 0) THEN BEGIN
self._byteTop = byteTop

ENDIF

IF (N_ELEMENTS(_extra) GT 0) THEN $
self -> IDLitDataOperation::SetProperty, _EXTRA = _extra

END

Discussion

The SetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the operation. The keyword inheritance mechanism
Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 135
allows properties to be set on the ExampleDataOp class’ superclasses without
knowing the names of the properties.

Using the N_ELEMENTS function, we check to see whether a value was specified
for each keyword. If a value is detected, we set the value of the associated property. In
this example, only one property (ByteTop) is specific to the ExampleDataOp object.
We set the value of the ExampleProperty directly in the ExampleDataOp object’s
instance data.

Finally, we call the superclass’ SetProperty method, passing in all of the keywords
stored in the _EXTRA structure.

Creating an UndoExecute Method

The operation class’ UndoExecute method is called when the user undoes an
invocation of the operation and the REVERSIBLE_OPERATION property is set on
the operation object. (See “Operations and the Undo/Redo System” on page 123 for
details on how undo and redo are handled in different situations.) The UndoExecute
method must reverse the effect of the Execute method.

The actual processing performed by the UndoExecute method depends entirely on the
operation.

Example UndoExecute Method

The following example code shows a simple UndoExecute method for the
ExampleDataOp operation, which reverses the operation of the Execute method.

FUNCTION ExampleDataOp::UndoExecute, data

; If byte data then offsets are 0 and 255, otherwise
; use data minimum and maximum.
offsetMax = (SIZE(data, /TYPE) eq 1) ? 255b : MAX(data)
offsetMin = (SIZE(data, /TYPE) eq 1) ? 0b : MIN(data)
data = offsetMax - TEMPORARY(data) + offsetMin
RETURN, 1

END

Discussion

When the user undoes an invocation of our ExampleDataOp operation, the iTool
system supplies the data that were computed by the Execute method when the
operation was invoked. Our UndoExecute method then reverses the original
operation.
iTool Developer’s Guide Creating a New Data-Centric Operation

136 Chapter 7: Creating an Operation
Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
data types of those fields. The object class structure must be defined before any
objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure
named ObjectClass__define (where ObjectClass is the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle” in Chapter 22 of the Building IDL Applications manual.

Subclassing from the IDLitDataOperation Class

The IDLitDataOperation class simplifies the creation of operations that act only on
data (as opposed to acting on the visual representation of that data) by providing
methods that automate much of the process of execution and storing undo/redo data.
If your operation class modifies data, you will almost certainly subclass from
IDLitDataOperation, or from another operation that subclasses from
IDLitDataOperation. See “IDLitDataOperation” in the IDL Reference Guide manual
for details on the methods and properties available to classes that subclass from
IDLitDataOperation.

Example Class Structure Definition

The following is the class structure definition for the ExampleDataOp operation
class. This procedure should be the last procedure in a file named
exampledataop__define.pro.

PRO ExampleDataOp__Define

struct = { ExampleDataOp, $
INHERITS IDLitDataOperation, $
_byteTop: 0B $

}

END

Discussion

The purpose of the structure definition routine is to define a named IDL structure
with structure fields that will contain the operation object instance data. The structure
name should be the same as the operation’s class name — in this case,
ExampleDataOp.
Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 137
Like many iTool operations that act on data, ExampleDataOp is created as a subclass
of the IDLitDataOperation class. Operation classes that subclass from
IDLitDataOperation class inherit methods and properties that make it easy to perform
operations that affect data in an iTool.

The ExampleDataOp Operation class instance data includes a single property; a byte
value that is stored in the _byteTop class structure field.

Note
This example is intended to demonstrate how simple it can be to create a new
operation class definition. While the class definition for an operation class with
significant extra functionality will likely define additional structure fields, and may
inherit from other iTool classes, the basic principles are the same.
iTool Developer’s Guide Creating a New Data-Centric Operation

138 Chapter 7: Creating an Operation
Creating a New Generalized Operation

Generalized operations are iTool operations that are not limited to acting on data that
underlies a visualization. Generalized operations are based on the IDLitOperation
class. The class definition file for an IDLitOperation object must (at the least) provide
methods to initialize the operation class, get and set property values, execute the
operation, undo and redo the operation, and define the operation class structure.
Complex operations will likely provide additional methods.

How an IDLitOperation Works

When an IDLitOperation is requested by a user, the operation’s DoAction method
(which must be provided by the operation class’ developer) is called. The DoAction
method is responsible for doing the following:

1. Retrieving the currently selected items and determining which items the
operation should be applied to.

2. Creating an IDLitCommandSet object to contain undo/redo information.

3. Recording the initial values of the selected objects in the IDLitCommandSet
object, if necessary.

4. Performing the actions associated with the operation.

5. Recording the final values of the selected objects in the IDLitCommandSet
object, if necessary.

6. Returning the IDLitCommandSet object.

Creating an IDLitOperation

The process of creating an IDLitDataOperation is outlined in the following sections:

• “Creating an Init Method” on page 139

• “Creating a Cleanup Method” on page 142

• “Creating a DoAction Method” on page 143

• “Creating a RecordInitialValues Method” on page 146

• “Creating a RecordFinalValues Method” on page 147

• “Creating a GetProperty Method” on page 147

• “Creating a SetProperty Method” on page 148
Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 139
• “Creating an UndoOperation Method” on page 149

• “Creating a RedoOperation Method” on page 150

• “Creating the Class Structure Definition” on page 151

Creating an Init Method

The operation class Init method handles any initialization required by the operation
object, and should do the following:

• define the Init function method

• call the Init methods of any superclasses

• register any properties of the operation, and set property attributes as necessary

• perform other initialization steps as necessary

• return the value 1 if the initialization steps are successful, or 0 otherwise

Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method via IDL’s keyword inheritance mechanism.

Note
Because iTool operations are invoked by the user’s interactive choice of an item
from a menu, they generally do not accept any keywords of their own.

The function signature of an Init method for an operation generally looks something
like this:

FUNCTION MyOperation::Init, _EXTRA = _extra

where MyOperation is the name of your operation class.

Use keyword inheritance (the _EXTRA keyword) to pass keyword parameters
through to any called routines as necessary. (See “Keyword Inheritance” in Chapter 4
of the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.)
iTool Developer’s Guide Creating a New Generalized Operation

140 Chapter 7: Creating an Operation
Superclass Initialization

The operation class Init method should call the Init method of any required
superclass. For example, if your operation class is based on an existing operation, you
would call that operation’s Init method:

success = self -> SomeOperationClass::Init(_EXTRA = _extra)

where SomeOperationClass is the class definition file for the operation on which
your new operation is based. The variable success contains a 1 if the initialization
was successful.

Note
Your operation class may have multiple superclasses. In general, each superclass’
Init method should be invoked by your class’ Init method.

Error Checking

Rather than simply calling the superclass Init method, it is a good idea to check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method; if the returned value is 0
(indicating failure), the current Init method also immediately returns with a value of
0:

IF (self -> SomeOperationClass::Init() EQ 0) THEN RETURN, 0

This convention is used in all operation classes included with IDL. RSI strongly
suggests that you include similar checks in your own class definition files.

Keywords to the Init Method

Properties of the operation class can be set in the Init method by specifying the
property names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitOperation class and the IDLitComponent class are
available to any operation class. See “IDLitOperation Properties” and
“IDLitComponent Properties” in the IDL Reference Guide manual.

Use keyword inheritance (the _EXTRA keyword) to pass keyword parameters
through to the superclass as necessary. (See “Keyword Inheritance” in Chapter 4 of
the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.)
Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 141
Standard Base Class

While you can create your new operation class from any existing operation class, in
many cases, operations that do not act directly on the data that underlies a
visualization will be subclassed directly from the base class IDLitOperation:

IF (self -> IDLitOperation::Init(_EXTRA = _extra) EQ 0) $
THEN RETURN, 0

The IDLitOperation class provides the base iTool functionality used in all operation
classes created by RSI. See “Subclassing from the IDLitOperation Class” on
page 152 for details.

Return Value

If all of the routines and methods used in the Init method execute successfully, it
should indicate successful initialization by returning 1. Other operation classes that
subclass from your operation class may check this return value, as your routine
should check the value returned by any superclass Init methods called.

Registering Properties

Operations can register properties with the iTool; registered properties show up in the
property sheet interface, and can be modified interactively by users. The iTool
property interface is described in detail in Chapter 4, “Property Management”.

Register a property by calling the RegisterProperty method of the IDLitComponent
class:

self -> RegisterProperty, PropertyIdentifier [, TypeCode] $
[, ATTRIBUTE = value]

where PropertyIdentifier is a string that uniquely identifies the property, TypeCode is
an integer between 0 and 9 specifying the property data type, and ATTRIBUTE is a
property attribute. See “Registering Properties” on page 54 for details.

Setting Property Attributes

If a property has already been registered, perhaps by a superclass of your operation
class, you can change the registered attribute values using the SetPropertyAttribute
method of the IDLitComponent class:

self -> SetPropertyAttribute, Identifier

where Identifier is the name of the keyword to the GetProperty and SetProperty
methods used to retrieve or change the value of this property. (The Identifier is
specified in the call to RegisterProperty either via the PropertyName argument or the
IDENTIFIER keyword.) See “Property Attributes” on page 58 for additional details.
iTool Developer’s Guide Creating a New Generalized Operation

142 Chapter 7: Creating an Operation
Example Init Method

The following example code shows a very simple Init method for an operation named
ExampleOp. This function would be included (along with the class structure
definition routine and any other methods defined by the class) in a file named
exampleop__define.pro.

FUNCTION ExampleOp::Init, _EXTRA = _extra

; Initialize the superclass.
IF (self -> IDLitOperation::Init(TYPES=['IDLARRAY2D'], $

NAME='Example Operation', ICON='generic_op', $
_EXTRA = _extra) NE 1) THEN $

RETURN, 0

; Return success
RETURN, 1

END

Discussion

The ExampleOp class is based on the IDLitOperation class (discussed in
“Subclassing from the IDLitOperation Class” on page 152). As a result, all of the
standard features of an iTool operation are already present. We don’t define any
keyword values to be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword values through to methods called
within the Init method. The ExampleOp Init method does the following things:

1. Calls the Init method of the superclass, IDLitOperation. We use the TYPES
keyword to specify that our operation works on data that has the iTool data
type 'IDLARRAY2D', provide a Name for the object instance, and provide an
icon. Finally, we use the _EXTRA keyword inheritance mechanism to pass
through any keywords provided when the ExampleOp Init method is called.

2. Returns the integer 1, indicating successful initialization.

Creating a Cleanup Method

The operation class Cleanup method handles any cleanup required by the operation
object, and should do the following:

• destroy any pointers or objects created by the operation

• call the superclass’ Cleanup method
Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 143
Calling the superclass’ cleanup method will destroy any objects created when the
superclass was initialized.

Note
If your operation class is based on the IDLitOperation class, and does not create any
pointers or objects of its own, the Cleanup method is not strictly required. It is
always safest, however, to create a Cleanup method that calls the superclass’
Cleanup method.

See “IDLitOperation::Cleanup” in the IDL Reference Guide manual for additional
details.

Example Cleanup Method

The following example code shows a very simple Cleanup method for the
ExampleOp operation:

PRO ExampleOp::Cleanup

;; Cleanup superclass
self -> IDLitDataOperation::Cleanup

END

Discussion

Since our operation does not have any instance data of its own, the Cleanup method
simply calls the superclass Cleanup method.

Creating a DoAction Method

The operation class DoAction method is called by the iTool system when an
operation is requested by the user. (Note that data-centric operations do not need to
implement the DoAction method because it is implemented by the
IDLitDataOperation class itself.) The DoAction method is responsible for the
following:

• determining which objects the operation should be applied to (generally, but
not always, the objects that are selected when the operation is invoked)

• retrieving the data from the selected objects

• creating an IDLitCommandSet object that will contain undo/redo data

• saving the state of the selected objects before the actions associated with the
operation are performed in the command set object
iTool Developer’s Guide Creating a New Generalized Operation

144 Chapter 7: Creating an Operation
• performing the requested actions on the selected objects

• saving the state of the selected objects after the actions associated with the
operation are performed in the command set object

• returning the command set object

Note
If your operation changes the values of its own registered properties (as the result of
user interaction with a dialog or other interface element called by DoUIService, for
example), be sure to call the RecordInitialValues and RecordFinalValues methods.
This ensures that changes made through the dialog are placed in the undo-redo
transaction buffer.

Example DoAction Method

The following example code shows a simple DoAction method for the ExampleOp
operation. This operation retrieves the STYLE property of any selected
IDLitVisSurface objects and increments its value by 1. Repeated invocations of this
operation would cause the selected surfaces to loop through the seven available
surface styles.

FUNCTION ExampleOp::DoAction, oTool

; Make sure we have a valid iTool object.
IF ~ OBJ_VALID(oTool) THEN RETURN, OBJ_NEW()

; Get the selected objects
oTargets = oTool -> GetSelectedItems()

; Select only IDLitVisSurface objects. If there are
; no surface objects selected, return a null object.
surfaces = OBJ_NEW()
FOR i = 0, N_ELEMENTS(oTargets)-1 DO BEGIN

IF (OBJ_ISA(oTargets[i], 'IDLitVisSurface')) THEN BEGIN
surfaces = OBJ_VALID(surfaces) ? $

[surfaces, oTargets[i]] : oTargets[i]
ENDIF

ENDFOR

IF (~OBJ_VALID(surfaces)) THEN RETURN, OBJ_NEW()

; Create a command set:
oCmdSet = self -> IDLitOperation::DoAction(oTool)

; Record the initial values
IF (~ self -> RecordInitialValues(oCmdSet, surfaces, '')) THEN $
Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 145
BEGIN
OBJ_DESTROY, oCmdSet
RETURN, OBJ_NEW()

ENDIF

; Increment the style index for each surface.
FOR i = 0, N_ELEMENTS(surfaces)-1 DO BEGIN

; Retrieve the current surface style and increment it
surfaces[i] -> GetProperty, STYLE = styleIndex
IF styleIndex eq 6 THEN BEGIN

styleIndex = 0
ENDIF ELSE BEGIN

styleIndex += 1
ENDELSE

; Set the new surface style
oTargets[i] -> SetProperty, STYLE = styleIndex

ENDFOR

oTool->RefreshCurrentWindow

;; Record the final values
result = self -> RecordFinalValues(oCmdSet, surfaces, '')

RETURN, oCmdSet

END

Discussion

The ExampleOp operation DoAction method does the following things:

1. Checks the validity of the iTool object passed to the DoAction method.

2. Retrieves the list of selected objects from the iTool object.

3. Filters out any selected objects that are not IDLitVisSurface objects.

4. Calls the superclass DoAction method to create an IDLitCommandSet object.

5. Calls the RecordInitialValues method to record the relevant values in the
command set object before the operation is performed.

6. Loops through the list of IDLitVisSurface objects and increments the STYLE
property of each by 1.

7. Calls the RecordFinalValues method to record the relevant values in the
command set object after the operation has been performed.

8. Returns the command set object.
iTool Developer’s Guide Creating a New Generalized Operation

146 Chapter 7: Creating an Operation
Creating a RecordInitialValues Method

The operation class RecordInitialValues method is responsible for recording the
appropriate “before” values from the specified objects in the provided
IDLitCommandSet object. The values recorded depend entirely on the operation
being performed.

Example RecordInitialValues Method

The following example code shows a simple RecordInitialValues method for the
ExampleOp operation. An IDLitCommand object is created for each of the target
objects, and the value of the STYLE property of each object is recorded as an Item in
the command object.

FUNCTION ExampleOp::RecordInitialValues, oCmdSet, oTargets, idProp

; Loop through the target objects and record the value of the
; STYLE property.
FOR i = 0, N_ELEMENTS(oTargets)-1 DO BEGIN

; Create a command object to store the values.
oCmd = OBJ_NEW('IDLitCommand', $

TARGET_IDENTIFIER = oTargets[i] -> GetFullIdentifier())
; Get the value of the STYLE property
oTargets[i] -> GetProperty, STYLE = styleIndex
; Add the value to the command object
void = oCmd -> AddItem('OLD_STYLE', styleIndex)
; Add the command object to the command set
oCmdSet -> Add, oCmd

ENDFOR

RETURN, 1

END

Discussion

The ExampleOp operation RecordInitialValues method simply loops through the
supplied list of target objects, creating a new IDLitCommand object for each. We set
the TARGET_IDENTIFIER property for each command object. Next, we retrieve the
value of the STYLE property for each target object and add it to the command object
as an Item. Finally, we add each command object to the supplied IDLitCommandSet
object.
Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 147
Creating a RecordFinalValues Method

The operation class RecordFinalValues method is responsible for recording the
appropriate “after” values from the specified objects in the provided
IDLitCommandSet object. The values recorded depend entirely on the operation
being performed.

Example RecordFinalValues Method

The following example code shows a simple RecordFinalValues method for the
ExampleOp operation. The new value of the STYLE property of each target object is
recorded in the appropriate IDLitCommand object retrieved from the command set.

FUNCTION ExampleOp::RecordFinalValues, oCmdSet, oTargets, idProp

; Loop through the target objects and record the value of the
; STYLE property.
FOR i = 0, N_ELEMENTS(oTargets)-1 DO BEGIN

; Retreive the appropriate command object from the
; command set.
oCmd = oCmdSet -> Get(POSITION = i)
; Get the value of the STYLE property
oTargets[i] -> GetProperty, STYLE = styleIndex
; Add the value to the command object
void = oCmd -> AddItem('NEW_STYLE', styleIndex)
; Add the command object to the command set
oCmdSet -> Add, oCmd

ENDFOR

RETURN, 1

END

Discussion

The ExampleOp operation RecordFinalValues method simply loops through the
supplied list of target objects, recording the new value for the STYLE property in the
IDLitCommand object associated with each target.

Creating a GetProperty Method

The operation class GetProperty method retrieves property values from the operation
object instance or from instance data of other associated objects. It should retrieve the
requested property value, either from the operation object’s instance data or by
calling another class’ GetProperty method.
iTool Developer’s Guide Creating a New Generalized Operation

148 Chapter 7: Creating an Operation
Note
Any property registered with a call to the RegisterProperty method must be listed as
a keyword to the GetProperty method either of the operation class or one of its
superclasses.

See “IDLitOperation::GetProperty” in the IDL Reference Guide manual for
additional details.

Example GetProperty Method

The following example code shows a very simple GetProperty method for the
ExampleOp operation:

PRO ExampleOp::GetProperty, _REF_EXTRA = _extra

; get superclass properties
IF (N_ELEMENTS(_extra) GT 0) THEN $

self -> IDLitOperation::GetProperty, _EXTRA = _extra

END

Discussion

The GetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the operation type. The keyword inheritance
mechanism allows properties to be retrieved from the ExampleOp class’ superclasses
without knowing the names of the properties.

In this example, there are no properties specific to the ExampleOp object, so we
simply call the superclass’ GetProperty method, passing in all of the keywords stored
in the _EXTRA structure.

Creating a SetProperty Method

The operation class SetProperty method stores property values in the operation
object’s instance data or in properties of associated objects. It should set the specified
property value, either by storing the value directly in the operation object’s instance
data or by calling another class’ SetProperty method.

Note
Any property registered with a call to the RegisterProperty method must be listed as
a keyword to the SetProperty method either of the operation class or one of its
superclasses.
Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 149
See “IDLitOperation::SetProperty” in the IDL Reference Guide manual for additional
details.

Example SetProperty Method

The following example code shows a very simple SetProperty method for the
ExampleOp operation:

PRO ExampleOp::SetProperty, _EXTRA = _extra

IF (N_ELEMENTS(_extra) GT 0) THEN $
self -> IDLitOperation::SetProperty, _EXTRA = _extra

END

Discussion

The SetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the operation. The keyword inheritance mechanism
allows properties to be set on the ExampleOp class’ superclasses without knowing
the names of the properties.

In this example, there are no properties specific to the ExampleOp object, so we
simply use the N_ELEMENTS function to check whether the _EXTRA structure
contains any elements. If it does, we call the superclass’ SetProperty method, passing
in all of the keywords stored in the _EXTRA structure.

Creating an UndoOperation Method

The operation class UndoOperation method is called when the user undoes the
operation by selecting “Undo” from a menu or toolbar.

Example UndoOperation Method

The following example code shows a very simple UndoOperation method for the
ExampleOp operation:

FUNCTION ExampleOp::UndoOperation, oCommandSet

; Retrieve the IDLitCommand objects stored in the
; command set object.
oCmds = oCommandSet -> Get(/ALL, COUNT = nObjs)

; Get a reference to the iTool object.
oTool = self -> GetTool()

; Loop through the IDLitCommand objects and restore the
iTool Developer’s Guide Creating a New Generalized Operation

150 Chapter 7: Creating an Operation
; original values.
FOR i = 0, nObjs-1 DO BEGIN

oCmds[i] -> GetProperty, TARGET_IDENTIFIER = idTarget
oTarget = oTool -> GetByIdentifier(idTarget)
; Get the old value
IF (oCmds[i] -> GetItem('OLD_STYLE', styleIndex) EQ 1) THEN $

oTarget -> SetProperty, STYLE = styleIndex
ENDFOR

END

Discussion

The UndoOperation method does the following things:

1. Retrieves an array of IDLitCommand objects from the supplied
IDLitCommandSet object

2. Gets a reference to the iTool object.

3. For each command object, retrieve the identifier string for the target object.
Use the identifier string to retrieve a reference to the target object itself.

4. Retrieve the OLD_STYLE item from the command object and use its value to
set the STYLE property on the target object.

Note
The UndoOperation method could also have been implemented without the use of
the values stored in the command set object simply by decrementing the value of the
STYLE property for each target.

Creating a RedoOperation Method

The operation class RedoOperation method is called when the user redoes the
operation by selecting “Redo” from a menu or toolbar.

Example RedoOperation Method

The following example code shows a very simple RedoOperation method for the
ExampleOp operation:

FUNCTION ExampleOp::RedoOperation, oCommandSet

; Retrieve the IDLitCommand objects stored in the
; command set object.
oCmds = oCommandSet -> Get(/ALL, COUNT = nObjs)

; Get a reference to the iTool object.
Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 151
oTool = self -> GetTool()

; Loop through the IDLitCommand objects and restore the
; new values.
FOR i = 0, nObjs-1 DO BEGIN

oCmds[i] -> GetProperty, TARGET_IDENTIFIER = idTarget
oTarget = oTool -> GetByIdentifier(idTarget)
; Get the new value
IF (oCmds[i] -> GetItem('NEW_STYLE', styleIndex) EQ 1) THEN $

oTarget -> SetProperty, STYLE = styleIndex
ENDFOR

END

Discussion

The RedoOperation method does the following things:

1. Retrieves an array of IDLitCommand objects from the supplied
IDLitCommandSet object

2. Gets a reference to the iTool object.

3. For each command object, retrieve the identifier string for the target object.
Use the identifier string to retrieve a reference to the target object itself.

4. Retrieve the NEW_STYLE Item from the command object and use its value to
set the STYLE property on the target object.

Note
The RedoOperation method could also have been implemented without the use of
the values stored in the command set object simply by incrementing the value of the
STYLE property for each target.

Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
data types of those fields. The object class structure must have been defined before
any objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure
named ObjectClass__define (where ObjectClass is the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle” in Chapter 22 of the Building IDL Applications manual.
iTool Developer’s Guide Creating a New Generalized Operation

152 Chapter 7: Creating an Operation
Subclassing from the IDLitOperation Class

The IDLitOperation class is the base class for all iTool operations. In almost all cases,
new operations will be subclassed either from the IDLitDataOperation class (which is
itself a subclass of IDLitOperation) or from a class that is a subclass of one of these
two classes.

Note
If your operation acts directly on data, rather than affecting the visual appearance of
objects in the iTool, you may be able to subclass from IDLitDataContainer. See
“Creating a New Data-Centric Operation” on page 125 for details.

See “IDLitOperation” in the IDL Reference Guide manual for details on the methods
and properties available to classes that subclass from IDLitOperation.

Example Class Structure Definition

The following is the class structure definition for the ExampleOp operation class.
This procedure should be the last procedure in a file named
exampleop__define.pro.

PRO ExampleOp__Define

struct = { ExampleOp, INHERITS IDLitOperation}

END

Discussion

The purpose of the structure definition routine is to define a named IDL structure
with structure fields that will contain the operation object instance data. The structure
name should be the same as the operation’s class name — in this case, ExampleOp.

Like many iTool operations that act on data, ExampleOp is created as a subclass of
the IDLitOperation class. The ExampleOp Operation class does not include any
instance data of its own.

Note
This example is intended to demonstrate how simple it can be to create a new
operation class definition. While the class definition for an operation class with
significant extra functionality will likely define additional structure fields, and may
inherit from other iTool classes, the basic principles are the same.
Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 153
Registering an Operation

Before an operation can be performed by an iTool, the operation’s class definition
must be registered as being available to the iTool. Registering an operation with the
iTool links the class definition file that contains the actual IDL code that defines the
operation with a simple string that names the type. Code that performs an operation in
an iTool uses the name string to specify which operation should be performed.

Using IDLitTool::RegisterOperation

In most cases, you will register an operation with the iTool in the iTool’s class Init
method. Registration ensures that the operation is available to the iTool. (See
“Creating a New iTool Class” on page 69 for details on the iTool class Init method.)

To register an operation, call the IDLitTool::RegisterOperation method:

self -> RegisterOperation, OperationName, Operation_Class_Name

where OperationName is the string you will use when referring to the operation, and
Operation_Class_Name is a string that specifies the name of the class file that
contains the operation’s definition.

Note
The file Operation_Class_Name__define.pro must exist somewhere in IDL’s
path for the visualization type to be successfully registered.

See “IDLitTool::RegisterOperation” in the IDL Reference Guide manual for details.

Specifying Useful Properties

You can set any property of the IDLitOperation and IDLitComponent classes when
registering an operation. The following properties may be of particular interest:

EXPENSIVE_OPERATION

A boolean value that indicates whether the operation is expensive. Expensive
operations are those that require significant memory or processing time to execute.
Individual operations should use the value of this property to determine whether the
results of the operation should be cached to avoid re-execution when undoing or
redoing.
iTool Developer’s Guide Registering an Operation

154 Chapter 7: Creating an Operation
ICON

A string value giving the name of an icon to be associated with this object. Typically,
this property is the name of a bitmap file to be used when displaying the object in a
tree view. See “Icon Bitmaps” on page 28 for details on where bitmap icon files are
located.

IDENTIFIER

Astring that will be used as the identifier of the object. Identifier strings specify
where within an iTool’s object hierarchy an object is located; this, in turn, may affect
whether and where the object is revealed in the iTool’s graphical user interface. For
example, to display a menu item for an operation named 'MyOperation' in the
iTool Operations menu, you would specify the identifier string
'operations/MyOperation'. See “iTool Object Identifiers” in Chapter 2 of the
iTool Developer’s Guide manual for details about how identifiers are named.

If this property is not specified, then the value of the OperationName argument is
used as the identifier.

REVERSIBLE_OPERATION

A boolean value that indicates whether the operation is reversible. When an operation
is reversible, it can be undone by applying an operation rather than restoring a stored
value. Rotation by a specified angle is an example of an operation that is reversible,
since applying another rotation by the same angle in the opposite direction returns the
visualization to its original state. Individual operations should use the value of this
property to determine how the operation should be undone.

SHOW_EXECUTION_UI

A boolean value that indicates whether the operation should display a user interface
element such as a dialog when the operation is executed.

TYPES

A string or an array of strings indicating the types of data to which the operation can
be applied. iTools data types are described in Chapter 3, “Data Management”. Set this
property to a null string ('') to specify that the operation can be applied to all types
of data.
Registering an Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 155
Unregistering an Operation

If you are creating a new iTool from an existing iTool class, you may want to remove
an operation registered for the existing class from your new tool. This can be useful if
you have an iTool class that implements all of the functionality you need, but which
registers an operation you don’t want included in your iTool. Rather than recreating
the iTool class to remove the operation, you could create your new iTool class in such
a way that it inherits from the existing iTool class, but unregisters the unwanted
operation.

Unregister an operation by calling the IDLitTool::UnregisterOperation method in the
Init method of your iTool class:

self -> UnregisterOperation, identifier

where identifier is the string value of the IDENTIFIER property specified when
registering the operation.

For example, suppose you are creating a new iTool that subclasses from the standard
iSurface tool, which is defined by the IDLitToolSurface class. If you wanted your
new tool to behave just like the iSurface tool, with the exception that it would not
handle the resample operation, you could include the following method call in your
iTool’s Init method:

self -> UnregisterOperation, 'Operations/Transform/Resample'

Finding the Identifier String

To find the string value used as the identifier parameter to the UnregisterOperation
method, you must inspect the class file that registers the operation. In the case of our
example, you would inspect the file idlittoolsurface__define.pro to find the
following call to the RegisterOperation method:

self -> RegisterOperation, 'Resample', 'IDLitopResample', $
 IDENTIFIER = 'Operations/Transform/Resample', $
 DATA_TYPE = 'array2', ICON = 'sum'

The value of the IDENTIFIER keyword to the RegisterOperation method
('Operations/Transform/Resample') is the string value of the operation’s
IDENTIFIER property.
iTool Developer’s Guide Unregistering an Operation

156 Chapter 7: Creating an Operation
Example: Data Resample Operation

This example creates a data operation to resample data in a dataset using the IDL
CONGRID function. The data resample operation is included in the file
idlitopresample__define.pro, located in the IDL distribution in the
lib/itools/components subdirectory of the main IDL directory.

Class Definition File

The class definition for idlitopresample consists of an Init method, an Execute
method, GetProperty and SetProperty methods, and a class structure definition
routine. As with all object class definition files, the class structure definition routine
is the last routine in the file, and the file is given the same name as the class definition
routine (with the suffix .pro appended).

Init Method

FUNCTION IDLitopResample::Init, _EXTRA = _extra

IF (~ self -> IDLitDataOperation::Init(NAME='Resample', $
TYPES=['IDLVECTOR','IDLARRAY2D','IDLARRAY3D'], $
DESCRIPTION="Resampling", _EXTRA = _extra)) THEN $

RETURN, 0

; Default values for resampling factors.
self._x = 2
self._y = 2
self._z = 2

; Register properties
self -> RegisterProperty, 'X', /FLOAT, $

DESCRIPTION='X resampling factor.'

self -> RegisterProperty, 'Y', /FLOAT, $
DESCRIPTION='Y resampling factor.'

self -> RegisterProperty, 'Z', /FLOAT, $
DESCRIPTION='Z resampling factor.'

self -> RegisterProperty, 'METHOD', $
ENUMLIST=['Nearest neighbor', 'Linear', 'Cubic'], $
NAME='Interpolation method', $
DESCRIPTION='Interpolation method.'

IF (N_ELEMENTS(_extra) GT 0) THEN $
Example: Data Resample Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 157
self -> IDLitopResample::SetProperty, _EXTRA = _extra

RETURN, 1

END

Discussion

The first item in our class definition file is the Init method. The Init method’s function
signature is defined first, using the class name IDLitOpResample. The _EXTRA
keyword inheritance mechanism allows any keywords specified in a call to the Init
method to be passed through to routines that are called within the Init method even if
we do not know the names of those keywords in advance.

Next, we call the Init method of the superclass. In this case, we are creating a subclass
of the IDLitDataOperation class; this provides us with all of the standard iTool data
operation functionality automatically. We specify three iTool data types on which our
operation will work: “IDLVECTOR”, “IDLARRAY2D”, and “IDLARRAY3D”. Any
“extra” keywords specified in the call to our Init method are passed to the
IDLitDataOperation::Init method via the keyword inheritance mechanism. If the call
to the superclass Init method fails, we return immediately with a value of 0.

Next we store the default values for the three resampling factors (one each for the X,
Y, and Z dimensions) in the object instance data fields _x, _y, and _z. We register
each of these values as a property of the operation. We also register the METHOD
property, assigning to it an enumerated list with three strings describing three
different interpolation methods (“Nearest Neighbor”, “Linear”, and “Cubic”).

If any “extra” keywords were specified in the call to our Init method, we pass them to
the SetProperty method our IDLitOpResample object.

Finally, we return the value 1 to indicate successful initialization.

Execute Method

FUNCTION IDLitopResample::Execute, data

dims = SIZE(data, /DIMENSIONS)

CASE N_ELEMENTS(dims) OF
1: newdims = dims*ABS([self._x]) > [1]
2: newdims = dims*ABS([self._x, self._y]) > [1, 1]
3: newdims = dims*ABS([self._x, self._y, self._z]) > [1, 1, 1]
ELSE: RETURN, 0

ENDCASE

; No change in size.
iTool Developer’s Guide Example: Data Resample Operation

158 Chapter 7: Creating an Operation
IF (ARRAY_EQUAL(newdims, dims)) THEN RETURN, 1

interp = 0 & cubic = 0
CASE (self._method) OF

0: ;; do nothing
1: interp = 1
2: cubic = 1

ENDCASE

CASE N_ELEMENTS(dims) OF
1: data = CONGRID(data, newdims[0], $

INTERP = interp, CUBIC = cubic)
2: data = CONGRID(data, newdims[0], newdims[1], $

INTERP = interp, CUBIC = cubic)
;; CONGRID always uses linear interp with 3D
3: data = CONGRID(data, newdims[0], newdims[1], newdims[2])

ENDCASE

RETURN, 1

END

Discussion

The Execute method does the work of our operation. Since IDLitOpResample is
based on the IDLitDataOperation class, when the operation is requested by a user the
Execute method is automatically called with each of the currently selected data
objects as the data argument.

First, we use the SIZE function to determine the number of dimensions of the input
data item. We use a CASE statement to create a new array (newdims) that stores the
number of elements of each dimension multiplied by the scale factor for each
dimension. The number of elements in each dimension cannot be less than one.

Next we use the ARRAY_EQUAL function to compare the number of elements of
each dimension of the input data with the number of elements of each dimension of
our newdims array. If these numbers are equal, no resampling will take place, so we
stop processing and return 1 for success.

If our newdims array contains a different number of elements than the original input
data, some resampling will take place. We check the value of the METHOD property
(stored in the instance data field _method) to determine what type of resampling we
should perform.

Finally, we call the CONGRID function with the appropriate arguments and
keywords, depending on the dimensionality of the input data and the resampling
method specified. We then return 1 for success.
Example: Data Resample Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 159
GetProperty Method

PRO IDLitopResample::GetProperty, $
X = x, $
Y = y, $
Z = z, $
METHOD = method, $
_REF_EXTRA = _extra

; My properties.
IF ARG_PRESENT(x) THEN $

x = self._x

IF ARG_PRESENT(y) THEN $
y = self._y

IF ARG_PRESENT(z) THEN $
z = self._z

IF ARG_PRESENT(method) THEN $
method = self._method

; Superclass properties.
IF (N_ELEMENTS(_extra) gt 0) THEN $

self -> IDLitDataOperation::GetProperty, _EXTRA = _extra

END

Discussion

The GetProperty method for our operation supports four properties named X, Y, Z,
and METHOD, stored in instance data fields of the same name (with an underscore
prepended). If any of these properties is specified in the call to the GetProperty
method, its value is retrieved from the appropriate instance data field. Any other
properties included in the method call are passed to the superclass’ GetProperty
method.

SetProperty Method

PRO IDLitopResample::SetProperty, $
X = x, $
Y = y, $
Z = z, $
METHOD = method, $
_EXTRA = _extra

; My properties.
IF N_ELEMENTS(x) THEN $
iTool Developer’s Guide Example: Data Resample Operation

160 Chapter 7: Creating an Operation
IF (x NE 0) THEN self._x = x

IF N_ELEMENTS(y) THEN $
IF (y NE 0) THEN self._y = y

IF N_ELEMENTS(z) THEN $
IF (z NE 0) THEN self._z = z

IF N_ELEMENTS(method) THEN $
self._method = method

; Superclass properties.
IF (N_ELEMENTS(_extra) gt 0) THEN $

self -> IDLitDataOperation::SetProperty, _EXTRA = _extra

END

Discussion

The SetProperty method for our operation supports four properties named X, Y, Z,
and METHOD, stored in instance data fields of the same name (with an underscore
prepended). If any of these properties is specified in the call to the SetProperty
method, its value is stored in the appropriate instance data field. Any other properties
included in the method call are passed to the superclass’ SetProperty method.

Class Definition

PRO IDLitopResample__define

struc = {IDLitopResample, $
inherits IDLitDataOperation, $
_x: 0d, $
_y: 0d, $
_z: 0d, $
_method: 0b $
}

END

Discussion

Our class definition routine is very simple. We create an IDL structure variable with
the name IDLitOpResample, specifying that the structure inherits from the
IDLitDataOperation class. The structure has three instance data fields named _x, _y,
and _z, which contain double-precision floating point values, and a single instance
data field named _method which contains a byte value.
Example: Data Resample Operation iTool Developer’s Guide

Chapter 8:

Creating a File Reader
This chapter describes the process of creating an iTool file reader.
Overview . 162
Predefined iTool File Readers 163
Creating a New File Reader 166

Registering a File Reader 177
Unregistering a File Reader 178
Example: TIFF File Reader 179
iTool Developer’s Guide 161

162 Chapter 8: Creating a File Reader
Overview

A file reader is an iTool component object class that defines how data stored in a file
should be imported into the iTool environment. File readers have mechanisms for
determining the type of data stored in a file, which allows them to create IDLitData
objects from the stored data. Some file readers implement a graphical user interface
allowing the user to specify the format of data before importing into the iTool; others
read a well-defined file type and operate more or less automatically. Some examples
of iTool file readers are:

• the ASCII file reader, which uses the IDL ASCII_TEMPLATE and
READ_ASCII functions to allow the user to define the format of data in a text
file,

• various image file readers, which allow the user to import data stored in JPEG,
BMP, PNG, and other well-defined image format files,

• a generic binary file reader, which allows the user to specify the format of files
containing binary data.

A number of standard file readers are predefined and included in the IDL iTools
package; if none of the predefined file readers suits your needs, you can create your
own file reader by subclassing either from the base IDLitReader class on which all of
the predefined file readers are based, or from one of the predefined file readers.

The File Reader Creation Process

To create a new iTool file reader, you will do the following:

• Choose an iTool file reader class on which your new operation will be based.
In almost all cases, you will base your new operation on the IDLitReader class,
which handles registration of standard file properties and provides standard
messaging features.

• Provide methods to check the type of data stored in the file and place the
retrieved the data in a data object.

• Set data object properties.

This chapter describes the process of creating a new file reader based on the
IDLitReader class.
Overview iTool Developer’s Guide

Chapter 8: Creating a File Reader 163
Predefined iTool File Readers

The iTool system distributed with IDL includes a number of pre-defined file readers.
You can include these file readers in an iTool directly by registering the class with
your iTool (as described in “Registering a File Reader” on page 177). You can also
create a new file reader class based on one of the pre-defined classes.

IDLitReadASCII

The iTools ASCII file reader uses the IDL READ_ASCII and ASCII_TEMPLATE
functions to read data from an ASCII file into an IDL variable or variables. It presents
a wizard interface that allows the user to define the structure of the data in the ASCII
file and specify which data should be included.

Registered Properties

None

IDLitReadBinary

The iTools Binary file reader uses the IDL READ_BINARY and
BINARY_TEMPLATE functions to read data from a binary data file into an IDL
variable or variables. It presents a wizard interface that allows the user to define the
structure of the data in the binary file and specify which data should be included.

Registered Properties

TEMPLATE — A template structure (previously defined by the
BINARY_TEMPLATE function) describing the file to be read.

IDLitReadBMP

The iTools BMP file reader uses the IDL READ_BMP function to read a *.bmp file
and place the image data in an iTool image data object.

Registered Properties

None

IDLitReadDICOM

The iTools DICOM reader uses the IDL READ_DICOM function to read a *.dcm
and place the image data in an iTool image data object.
iTool Developer’s Guide Predefined iTool File Readers

164 Chapter 8: Creating a File Reader
Registered Properties

None

IDLitReadISV

The iTools Saved Variables file reader restores a saved iTool state (*.isv) file. All
data objects in the file are placed into the current iTool data manager session, and all
visualization objects are restored and displayed.

Registered Properties

None

IDLitReadJPEG

The iTools JPEG file reader uses the IDL READ_JPEG procedure to read a *.jpg or
*.jpeg file and place the image data in an iTool image data object.

Registered Properties

None

IDLitReadPICT

The iTools PICT file reader uses the IDL READ_PICT procedure to read a *.pct or
*.pict file and place the image data in an iTool image data object.

Registered Properties

None

IDLitReadPNG

The iTools PNG file reader uses the IDL READ_PNG function to read a *.png file
and place the image (and, optionally, palette) data in an iTool image data object.

Registered Properties

None

IDLitReadTIFF

The iTools TIFF file reader uses the IDL READ_TIF function to read a *.tif or
*.tiff file and place the image (and, optionally, palette) data in an iTool image data
object.
Predefined iTool File Readers iTool Developer’s Guide

Chapter 8: Creating a File Reader 165
Registered Properties

IMAGE_INDEX — An integer specifying the index of the image within the TIFF file
that should be read into the image data object.

IDLitReadWAV

The iTools WAV file reader uses the IDL READ_WAV function to read a *.wav file
and place the data in an iTool vector object.

Registered Properties

None
iTool Developer’s Guide Predefined iTool File Readers

166 Chapter 8: Creating a File Reader
Creating a New File Reader

An iTool file reader class definition file must (at the least) provide methods to
initialize the file reader class, get and set property values, handle changes to the
underlying data, clean up when the file reader is destroyed, and define the file reader
class structure. Complex file reader types will likely provide additional methods.

The process of creating an file reader is outlined in the following sections:

• “Creating an Init Method” on page 166

• “Creating a Cleanup Method” on page 170

• “Creating a GetProperty Method” on page 171

• “Creating a SetProperty Method” on page 172

• “Creating an IsA Method” on page 173

• “Creating a GetData Method” on page 174

• “Creating the Class Structure Definition” on page 175

Creating an Init Method

The file reader class Init method handles any initialization required by the file reader
object, and should do the following:

• define the Init function method

• call the Init methods of any superclasses

• register any properties of your file reader, and set property attributes as
necessary

• perform other initialization steps as necessary

• return the value 1 if the initialization steps are successful, or 0 otherwise

Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method via IDL’s keyword inheritance mechanism. The
function signature for an Init method for a file reader generally looks something like
this:
Creating a New File Reader iTool Developer’s Guide

Chapter 8: Creating a File Reader 167
FUNCTION MyReader::Init, MYKEYWORD1 = mykeyword1, $
MYKEYWORD2 = mykeyword2, ..., _REF_EXTRA = _extra

where MyReader is the name of your file reader class and the MYKEYWORD
parameters are keywords handled explicitly by your Init function.

Use keyword inheritance (the _REF_EXTRA keyword) to pass keyword parameters
through to any called routines as necessary. (See “Keyword Inheritance” in Chapter 4
of the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.)

Superclass Initialization

The file reader class Init method should call the Init method of any required
superclass. For example, if your file reader is based on an existing file reader class,
you would call that class’ Init method:

success = self -> SomeFileReaderClass::Init(_EXTRA = _extra)

where SomeFileReaderClass is the class definition file for the file reader on which
your new file reader is based. The variable success will contain a 1 if the
initialization was successful.

Note
Your file reader class may have multiple superclasses. In general, each superclass’
Init method should be invoked by your class’ Init method.

Error Checking

Rather than simply calling the superclass Init method, it is a good idea to check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method; if the returned value is 0
(indicating failure), the current Init method also immediately returns with a value of
0:

IF (self -> SomeFileReaderClass::Init() EQ 0) THEN RETURN, 0

This convention is used in all file reader classes included with IDL. RSI strongly
suggests that you include similar checks in your own class definition files.

Keywords to the Init Method

Properties of the file reader class can be set in the Init method by specifying the
property names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitReader class and the IDLitComponent class are
iTool Developer’s Guide Creating a New File Reader

168 Chapter 8: Creating a File Reader
available to any file reader class. See “IDLitReader Properties” and
“IDLitComponent Properties” in the IDL Reference Guide manual.

Use keyword inheritance (the _EXTRA keyword) to pass keyword parameters
through to the superclass as necessary. (See “Keyword Inheritance” in Chapter 4 of
the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.)

Standard Base Class

While you can create your new file reader class from any existing file reader class, in
many cases, file reader classes you create will be subclassed directly from the base
class IDLitReader:

IF (self -> IDLitReader::Init(Extensions, _EXTRA = _extra) EQ 0) $
THEN RETURN, 0

where Extensions is a string or array of strings specifying the filename extensions
readable by your file reader.

Note
The value of the Extensions argument is used only to display the proper filename
filter when an Open dialog is displayed — it is not a check for the proper filetype.
The IsA method must check the file to determine whether it is readable by your file
reader.

The IDLitReader class provides the base iTool file reader functionality used in the
tools created by RSI. See “Subclassing from the IDLitReader Class” on page 175 for
details.

Return Value

If all of the routines and methods used in the Init method execute successfully, it
should indicate successful initialization by returning 1. Other file reader classes that
subclass from your file reader class may check this return value, as your routine
should check the value returned by any superclass Init methods called.

Registering Properties

File reader objects can register properties with the iTool; registered properties show
up in the property sheet interface shown in the system preferences browser (described
in “Properties of the iTools System” on page 64), and can be modified interactively
by users. The iTool property interface is described in detail in Chapter 4, “Property
Management”.
Creating a New File Reader iTool Developer’s Guide

Chapter 8: Creating a File Reader 169
Register a property by calling the RegisterProperty method of the IDLitComponent
class:

self -> RegisterProperty, PropertyIdentifier [, TypeCode] $
[, ATTRIBUTE = value]

where PropertyIdentifier is a string that uniquely identifies the property, TypeCode is
an integer between 0 and 9 specifying the property data type, and ATTRIBUTE is a
property attribute. See “Registering Properties” on page 54 for details.

Note
A file reader need not register any properties at all, if the read operation is simple.
Many of the standard iTool image file readers work without registering any
properties.

Setting Property Attributes

If a property has already been registered, perhaps by a superclass of your file reader
class, you can change the registered attribute values using the SetPropertyAttribute
method of the IDLitComponent class:

self -> SetPropertyAttribute, Identifier

where Identifier is the name of the keyword to the GetProperty and SetProperty
methods used to retrieve or change the value of this property. The Identifier is
specified in the call to RegisterProperty either via the PropertyName argument or the
IDENTIFIER keyword. See “Property Attributes” on page 58 for additional details.

Passing Through Caller-Supplied Property Settings

If you have included the _REF_EXTRA keyword in your function definition, you can
use IDL’s keyword inheritance mechanism to pass any “extra” keyword values
included in the call to the Init method through to other routines. This mechanism
allows you to specify property settings when the Init method is called; simply include
each property’s keyword/value pair when calling the Init method, and include the
following in the body of the Init method:

IF (N_ELEMENTS(_extra) GT 0) THEN $
self -> MyReader::SetProperty, _EXTRA = _extra

where MyReader is the name of your file reader class. This line has the effect of
passing any “extra” keyword values to your file reader class’ SetProperty method,
where they can either be handled directly or passed through to the SetProperty
methods of the superclasses of your class. See “Creating a SetProperty Method” on
page 172 for details.
iTool Developer’s Guide Creating a New File Reader

170 Chapter 8: Creating a File Reader
Example Init Method

FUNCTION ExampleReader::Init, _EXTRA = _extra

IF (self -> IDLitReader::Init('ppm', FILETYPE='PPM', $
DESCRIPTION="PPM File Reader", $
_EXTRA = _extra) EQ 0) THEN $
RETURN, 0

RETURN, 1

END

Discussion

The ExampleReader class is based on the IDLitReader class (discussed in
“Subclassing from the IDLitReader Class” on page 175). As a result, all of the
standard features of an iTool file reader class are already present. We don’t define any
keyword values to be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword values through to methods called
within the Init method. The ExampleReader Init method does the following things:

1. Calls the Init method of the superclass, IDLitReader. We specify a list of
accepted filename extensions (only ppm, in this case) via the Extensions
argument, and set the FILETYPE keyword. We include a description of the
reader via the DESCRIPTION keyword. Finally, we use the _EXTRA keyword
inheritance mechanism to pass through any keywords provided when the
ExampleReader Init method is called.

2. Returns the integer 1, indicating successful initialization.

Creating a Cleanup Method

The file reader class Cleanup method handles any cleanup required by the file reader
object, and should do the following:

• destroy any pointers or objects created by the file reader

• call the superclass’ Cleanup method

Calling the superclass’ cleanup method will destroy any objects created when the
superclass was initialized.

Note
If your file reader class is based on the IDLitReader class, and does not create any
pointers or objects of its own, the Cleanup method is not strictly required. It is
Creating a New File Reader iTool Developer’s Guide

Chapter 8: Creating a File Reader 171
always safest, however, to create a Cleanup method that calls the superclass’
Cleanup method.

See “IDLitReader::Cleanup” in the IDL Reference Guide manual for additional
details.

Example Cleanup Method

PRO ExampleReader::Cleanup

;; Cleanup superclass
self -> IDLitReader::Cleanup

END

Discussion

Since our file reader object does not have any instance data of its own, the Cleanup
method simply calls the superclass Cleanup method.

Creating a GetProperty Method

The file reader class GetProperty method retrieves property values from the file
reader object instance or from instance data of other associated objects. It should
retrieve the requested property value, either from the file reader object’s instance data
or by calling another class’ GetProperty method.

Note
Any property registered with a call to the RegisterProperty method must be listed as
a keyword to the GetProperty method either of the visualization class or one of its
superclasses.

Note
A file reader need not register any properties at all, if the read operation is simple.
Many of the standard iTool image file readers work without registering any
properties.

See “IDLitReader::GetProperty” in the IDL Reference Guide manual for additional
details.
iTool Developer’s Guide Creating a New File Reader

172 Chapter 8: Creating a File Reader
Example GetProperty Method

PRO ExampleReader::GetProperty, _REF_EXTRA = _extra

IF (N_ELEMENTS(_extra) GT 0) THEN $
self -> IDLitReader::GetProperty, _EXTRA = _extra

END

Discussion

The GetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the file reader. Since the file reader we are creating has
no properties of its own, there are no keywords explicitly defined. The keyword
inheritance mechanism allows properties to be retrieved from the ExampleReader
class’ superclasses without knowing the names of the properties.

Since our ExampleReader class has no properties of its own, we simply call the
superclass’ GetProperty method, passing in all of the keywords stored in the
_EXTRA structure.

Creating a SetProperty Method

The file reader SetProperty method stores property values in the file reader object’s
instance data. It should set the specified property value, either by storing the value
directly in the visualization object’s instance data or by calling another class’
SetProperty method.

Note
Any property registered with a call to the RegisterProperty method must be listed as
a keyword to the SetProperty method either of the visualization class or one of its
superclasses.

Note
A file reader need not register any properties at all, if the read operation is simple.
Many of the standard iTool image file readers work without registering any
properties.

See “IDLitReader::SetProperty” in the IDL Reference Guide manual for additional
details.
Creating a New File Reader iTool Developer’s Guide

Chapter 8: Creating a File Reader 173
Example SetProperty Method

PRO ExampleReader::SetProperty, _EXTRA = _extra

IF (N_ELEMENTS(_extra) GT 0) THEN $
self -> IDLitReader::SetProperty, _EXTRA = _extra

END

Discussion

The SetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the visualization type. Since the file reader we are
creating has no properties of its own, no keywords are explicitly defined. The
keyword inheritance mechanism allows properties to be set on the ExampleReader
class’ superclasses without knowing the names of the properties.

Using the N_ELEMENTS function, we check to see whether any properties were
specified via the keyword inheritance mechanism. If any keywords were specified,
we call the superclass’ SetProperty method, passing in all of the keywords stored in
the _EXTRA structure.

Creating an IsA Method

The file reader IsA method must accept a string containing the name of the file to be
read as its only parameter, and must determine whether the file is of the proper type to
be read by your file reader. If the file is of the correct type, the IsA method must
return 1; if the file is not of the correct type, the IsA method should display an error
message and return 0.

See “IDLitReader::IsA” in the IDL Reference Guide manual for additional details.

Example IsA Method

FUNCTION ExampleReader::IsA, strFilename

iDot = STRPOS(strFilename, '.', /REVERSE_SEARCH)

IF (iDot GT 0) THEN BEGIN
fileSuffix = STRUPCASE(STRMID(strFilename, iDot + 1))
IF (STRUPCASE(fileSuffix) EQ 'PPM') THEN RETURN, 1

ENDIF

self -> IDLitIMessaging::ErrorMessage, $
["The specified file is not a PPM file."], $
SEVERITY = 0, TITLE="Wrong File Type"
iTool Developer’s Guide Creating a New File Reader

174 Chapter 8: Creating a File Reader
RETURN, 0

END

Discussion

Note
Our example IsA method will simply check the filename for the presence of the
proper filename extension. A more sophisticated IsA method would actually inspect
the contents of the specified file.

The IsA method accepts a string that contains a file name. Using the supplied file
name, we first search backwards from the end of the name until we locate a dot
character. If the filename contains a dot, we extract the string that follows the dot and
convert it to upper case. If the extracted string is 'PPM', we return success; if the
extracted string is not 'PPM' or if there is no dot in the file name, we issue an error
using the IDLitIMessaging::ErrorMessage method and return failure.

Creating a GetData Method

The file reader GetData method does the work of the file reader, first creating an IDL
variable or variables to contain the data read from the file, then placing the data into
an iTool data object. If this process is successful, the GetData method must place the
created data object in the variable supplied as the method’s only argument and return
1 for success. If the process is not successful, the GetData method must return 0.

See “IDLitReader::GetData” in the IDL Reference Guide manual for additional
details.

Example GetData Method

FUNCTION ExampleReader::GetData, oImageData

; Get the name of the file currently associated with the reader.
filename = self -> GetFilename()

; Read the file.
READ_PPM, filename, image

; Store image data in Image Data object.
oImageData = OBJ_NEW('IDLitDataIDLImage', $

NAME = FILE_BASENAME(fileName))

IF OBJ_VALID(oImageData) THEN BEGIN
RETURN, oImageData -> SetData(image, 'ImagePixels', /NO_COPY)

ENDIF
Creating a New File Reader iTool Developer’s Guide

Chapter 8: Creating a File Reader 175
RETURN, 0

END

Discussion

The GetData method accepts a single argument, which is a named variable that will
contain the data object. Our GetData method’s first step is to retrieve the file name of
the file on which the method is being called using the GetFilename method. Since our
example file reader reads data from PPM files, the file name is then passed to the IDL
READ_PPM procedure. An IDLitDataImage object that will hold the image data is
created in the named variable specified by the argument to the GetData method
(oImageData, in this case); the NAME property set to the filename of the original
data file. We check to ensure that the oImageData object was created successfully and
add the image data returned by the READ_PPM procedure using the
IDLitData::SetData method. Note the use of the NO_COPY keyword to prevent
making copies of the image data array, which could be quite large. Finally, we return
the value returned by the SetData method (1 for success, 0 for failure), or we return 0
if oImageData is not a valid object.

Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
data types of those fields. The object class structure must have been defined before
any objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure
named ObjectClass__define (where ObjectClass is the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle” in Chapter 22 of the Building IDL Applications manual.

Subclassing from the IDLitReader Class

The IDLitReader class is the base class for all iTool file readers. In almost all cases,
new file readers will be subclassed either from the IDLitReader class or from a class
that is a subclass of IDLitReader.

See “IDLitReader” in the IDL Reference Guide manual for details on the methods
and properties available to classes that subclass from IDLitReader.
iTool Developer’s Guide Creating a New File Reader

176 Chapter 8: Creating a File Reader
Example Class Structure Definition

The following is the class structure definition for the ExampleReader file reader
class. This procedure should be the last procedure in a file named
examplereader__define.pro.

PRO ExampleReader__Define

struct = { ExampleReader, $
INHERITS IDLitReader $

}

END

Discussion

The purpose of the structure definition routine is to define a named IDL structure
with structure fields that will contain the visualization object instance data. The
structure name should be the same as the visualization’s class name — in this case,
ExampleReader.

Like many iTool file reader classes, ExampleReader is created as a subclass of the
IDLitReader class. File reader classes that subclass from IDLitReader class inherit all
of the standard iTool file reader features, as described in “Subclassing from the
IDLitReader Class” on page 175.

The ExampleReader class has no instance data of its own. For a more complex
example, see “Example: TIFF File Reader” on page 179.
Creating a New File Reader iTool Developer’s Guide

Chapter 8: Creating a File Reader 177
Registering a File Reader

Before a file reader can be used by an iTool to read in a file, the file reader’s class
definition must be registered as being available to the iTool. Registering a file reader
with the iTool links the class definition file that contains the actual IDL code that
defines the file reader with a simple string that names the reader. Code that calls a file
reader in an iTool uses the name string to specify which reader should be created.

Using IDLitTool::RegisterFileReader

In most cases, you will register a file reader with the iTool in the iTool’s class Init
method. Registration ensures that the file reader is available when the iTool attempts
to use it to read a file. (See “Creating a New iTool Class” on page 69 for details on the
iTool class Init method.)

To register a file reader, call the IDLitTool::RegisterFileReader method:

self -> RegisterFileReader, Reader_Type, ReaderType_Class_Name, $
ICON = icon

where Reader_Type is the string you will use when referring to the file reader,
ReaderType_Class_Name is a string that specifies the name of the class file that
contains the file reader’s definition, and icon is a string containing the name of a
bitmap file to be used in the preferences browser.

Note
The file ReaderType_Class_Name__define.pro must exist somewhere in
IDL’s path for the file reader to be successfully registered.

See “IDLitTool::RegisterFileReader” in the IDL Reference Guide manual for details.

Specifying Useful Properties

You can set any property of the IDLitReader and IDLitComponent classes when
registering a file reader. The following properties may be of particular interest:

ICON

A string value giving the name of an icon to be associated with this object. Typically,
this property is the name of a bitmap file to be used when displaying the object in a
tree view. See “Icon Bitmaps” on page 28 for details on where bitmap icon files are
located.
iTool Developer’s Guide Registering a File Reader

178 Chapter 8: Creating a File Reader
Unregistering a File Reader

If you are creating a new iTool from an existing iTool class, you may want to remove
a file reader registered for the existing class from your new tool. This can be useful if
you have an iTool class that implements all of the functionality you need, but which
registers a file reader you don’t want included in your iTool. Rather than recreating
the iTool class to remove the file reader, you could create your new iTool class in such
a way that it inherits from the existing iTool class, but unregisters the unwanted file
reader.

Unregister a file reader by calling the IDLitTool::UnregisterFileReader method in the
Init method of your iTool class:

self -> UnregisterFileReader, identifier

where identifier is the string name used when registering the file reader.

For example, suppose you are creating a new iTool that subclasses from a standard
iTool that is based on the IDLitToolbase class. If you wanted your new tool to behave
just like the a standard tool, with the exception that it would not read PNG files, you
could include the following method call in your iTool’s Init method:

self -> UnregisterFileReader, 'PNG File Reader'

Finding the Identifier String

To find the string value used as the identifier parameter to the UnregisterFileReader
method, you must inspect the class file that registers the file reader. In the case of our
example, you would inspect the file idlittoolbase__define.pro to find the
following call to the RegisterFileReader method:

self -> RegisterFileReader, 'PNG File Reader', 'IDLitReadPNG'

The first argument to the RegisterFileReader method ('PNG File Reader') is the
string name of the file reader.
Unregistering a File Reader iTool Developer’s Guide

Chapter 8: Creating a File Reader 179
Example: TIFF File Reader

This example creates a file reader to read TIFF format files. The TIFF file reader is
included in the file idlitreadtiff__define.pro, located in the IDL distribution
in the lib/itools/components subdirectory of the main IDL directory.

Class Definition File

The class definition for idlitreadtiff consists of an Init method, an IsA method,
a GetData method, GetProperty and SetProperty methods, and a class structure
definition routine. As with all object class definition files, the class structure
definition routine is the last routine in the file, and the file is given the same name as
the class definition routine (with the suffix .pro appended).

Init Method

FUNCTION IDLitReadTIFF::Init, _EXTRA = _extra

; Call the superclass Init method
IF (self -> IDLitReader::Init(["tiff", "tif"],$

FILETYPE="TIFF", NAME="Tiff Files", $
DESCRIPTION="TIFF File format", $
_EXTRA = _extra) NE 1) THEN $

RETURN, 0

; Initialize the instance data field
self._index = 0

; Register the index property
self -> RegisterProperty, 'IMAGE_INDEX', /INTEGER, $

Description='Index of the image to read from the TIFF file.'

RETURN,1

END

Discussion

The first item in our class definition file is the Init method. The Init method’s function
signature is defined first, using the class name IDLitReadTIFF. The _EXTRA
keyword inheritance mechanism allows any keywords specified in a call to the Init
method to be passed through to routines that are called within the Init method even if
we do not know the names of those keywords in advance.
iTool Developer’s Guide Example: TIFF File Reader

180 Chapter 8: Creating a File Reader
Next, we call the Init method of the superclass. In this case, we are creating a subclass
of the IDLitReader class; this provides us with all of the standard iTool file reader
functionality automatically. Any “extra” keywords specified in the call to our Init
method are passed to the IDLitReader::Init method via the keyword inheritance
mechanism.

We specify a list of accepted filename extensions (tiff and tif, in this case) via the
Extensions argument, and set the FILETYPE keyword. We specify a value for the
NAME property of the reader object (this is displayed in the system preferences
dialog) and include a description of the reader via the DESCRIPTION keyword.
Finally, we use the _EXTRA keyword inheritance mechanism to pass through any
keywords provided when the Init method is called.

Our TIFF reader object has a single instance data field: _index, which is used to store
the index number of the image to read from a multi-image TIFF file. We initialize this
instance data field to 0, and register the IMAGE_INDEX property to provide access
to this field via the property sheet interface.

Finally, we return the value 1 to indicate successful initialization.

IsA Method

FUNCTION IDLitReadTIFF::Isa, strFilename

RETURN, QUERY_TIFF(strFilename);

END

Discussion

The IsA method for our TIFF file reader is simple: we use the IDL QUERY_TIFF
function to determine whether the specified file is a TIFF file, returning the function’s
return value.

GetData Method

FUNCTION IDLitReadTIFF::GetData, oImageData

filename = self -> GetFilename()

IF (QUERY_TIFF(filename, fInfo, IMAGE_INDEX = self._index) EQ 0)
$

THEN RETURN, 0

IF (fInfo.has_palette) THEN BEGIN
image = READ_TIFF(filename, palRed, palGreen, palBlue, $

IMAGE_INDEX = self._index)
Example: TIFF File Reader iTool Developer’s Guide

Chapter 8: Creating a File Reader 181
ELSE
image = READ_TIFF(filename, IMAGE_INDEX = self._index)

ENDIF

; Store image data in Image Data object.
oImageData = OBJ_NEW('IDLitDataImage', $

NAME = FILE_BASENAME(fileName))

result = oImageData -> SetData(image, 'Image', /NO_COPY)

IF (RESULT EQ 0) THEN $
RETURN, 0

; Store palette data in Image Data object.
IF (fInfo.has_palette) THEN $

result = oImageData -> SetData(TRANSPOSE([[palRed], $
[palGreen], [palBlue]]), 'Palette')

IF fInfo.num_images GT 1 THEN $
self -> IDLitIMessaging::StatusMessage, $

'Read channel '+strtrim(self._index,2)

RETURN, result

END

Discussion

The GetData method for our TIFF file reader begins by retrieving the name of the file
associated with the reader object. We then use the IDL QUERY_TIFF function to
check whether the image specified by the value of the IMAGE_INDEX property
(stored in the _index instance data field) exists, returning 0 for failure if the
specified image does not exist.

QUERY_TIFF also returns a structure containing information about the image; we
use this structure to determine whether the image has a palette. We use the presence
of a palette to choose the correct call to the READ_TIFF function, which places the
image data in a set of local variables.

Next, we construct an IDLitDataImage object to store the image data, using the base
name of the image file for the object’s NAME property. We use the SetData method
to place the image data into the newly created image data object, specifying the string
'Image' as the data object’s identifier. A check of the return value from the SetData
method allows us to return 0 from our GetData method if we are unable to store the
image data in the image object for any reason.

If the image includes palette data, we store the array of red, green, and blue values
using the SetData method, specifying 'Palette' as the identifier. The palette
iTool Developer’s Guide Example: TIFF File Reader

182 Chapter 8: Creating a File Reader
variables returned by READ_TIFF represent image planes; since the IDLitVisImage
visualization type that we will use to display the image expects data interleaved by
pixel, we use the TRANSPOSE function to convert the palette data into the correct
format.

Finally, we use the StatusMessage method of the IDLitIMessaging class to report to
the user which image was retrieved from the TIFF file. The message is displayed in
the status area of the iTool window.

GetProperty Method

PRO IDLItReadTIFF::GetProperty, IMAGE_INDEX = IMAGE_INDEX, $
_REF_EXTRA = _extra

IF (ARG_PRESENT(image_index)) THEN $
image_index= self._index

IF (N_ELEMENTS(_extra) GT 0) THEN $
self -> IDLitReader::GetProperty, _extrA = _extra

END

Discussion

The GetProperty method for our TIFF file reader supports a single property named
IMAGE_INDEX. If this property is specified in the call to the GetProperty method,
its value is retrieved from the _index instance data field. Any other properties
included in the method call are passed to the superclass’ GetProperty method.

SetProperty Method

PRO IDLItReadTIFF::SetProperty, IMAGE_INDEX = IMAGE_INDEX, $
_EXTRA = _extra

IF (N_ELEMENTS(image_index) GT 0) THEN $
self._index = image_index

IF (N_ELEMENTS(_extra) GT 0) THEN $
self -> IDLitReader::SetProperty, _extrA = _extra

END

Discussion

The SetProperty method for our TIFF file reader supports a single property named
IMAGE_INDEX. If this property is specified in the call to the SetProperty method,
its value is placed in the _index instance data field. Any other properties included in
the method call are passed to the superclass’ SetProperty method.
Example: TIFF File Reader iTool Developer’s Guide

Chapter 8: Creating a File Reader 183
Class Definition

PRO IDLitReadTIFF__Define

struct = {IDLitReadTIFF, $
inherits IDLitReader, $
_index : 0 $

}
END

Discussion

Our class definition routine is very simple. We create an IDL structure variable with
the name IDLitReadTIFF, specifying that the structure inherits from the
IDLitReader class. The structure has a single instance data field named _index,
which we specify as an integer value.
iTool Developer’s Guide Example: TIFF File Reader

184 Chapter 8: Creating a File Reader
Example: TIFF File Reader iTool Developer’s Guide

Chapter 9:

Creating a File Writer
This chapter describes the process of creating an iTool file writer.
Overview . 186
Creating a New File Writer 190
Registering a File Writer 201

Unregistering a File Writer 202
Example: TIFF File Writer 203
iTool Developer’s Guide 185

186 Chapter 9: Creating a File Writer
Overview

A file writer is an iTool component object class that defines how data stored in the
iTool data manager can be exported to a file. File writers have mechanisms for
manipulating data stored in iTool data objects into the proper format for a given file
type. Some examples of iTool file writers are:

• the ASCII file writer, which uses the IDL PRINTF procedure to write data to a
text file.

• various image file writers, which allow the user to save data in JPEG, BMP,
PNG, and other well-defined image format files,

• a generic binary file writer, which uses the IDL WRITEU procedure to write
unformatted binary data to a file.

A number of standard file writers are predefined and included in the IDL iTools
package; if none of the predefined file writers suits your needs, you can create your
own file writer by subclassing either from the base IDLitWriter class on which all of
the predefined file writers are based, or from one of the predefined file writers.

The File Writer Creation Process

To create a new iTool file writer, you will do the following:

• Choose an iTool file writer class on which your new operation will be based. In
almost all cases, you will base your new operation on the IDLitWriter class,
which handles registration of standard file properties and provides standard
messaging features.

• Provide methods that extract the image data from the data object and create a
file using IDL’s output routines (PRINT, WRITE, or one of the IDL WRITE_*
routines).

This chapter describes the process of creating a new file writer based on the
IDLitWriter class.
Overview iTool Developer’s Guide

Chapter 9: Creating a File Writer 187
Predefined iTool File Writers

The iTool system distributed with IDL includes a number of pre-defined file writers.
You can include these file writers in an iTool directly by registering the class with
your iTool (as described in “Registering a File Writer” on page 201). You can also
create a new file writer class based on one of the pre-defined classes.

IDLitWriteASCII

The iTools ASCII file writer uses the IDL PRINTF procedure to print strings to a file.

Registered Properties

STRING_SEPARATOR — A string that is used to separate the values stored in the
ASCII file.

USE_DEFAULT_FORMAT — A boolean value that specifies whether a default format
string should be used.

STRING_FORMAT — A string specifying the format string to be used when writing
the data to the ASCII file. See “Format Codes” in Chapter 10, “Files and
Input/Output” in the Building IDL Applications manual for a discussion of format
codes.

Note
The format code should not include parentheses.

IDLitWriteBinary

The iTools Binary file writer uses the IDL WRITEU procedure to write unformatted
binary data to a file.

Registered Properties

None

IDLitWriteBMP

The iTools BMP file writer uses the IDL WRITE_BMP procedure to write an image
and its color table vectors to a Microsoft Windows Version 3 device independent
bitmap file (.bmp).

Registered Properties

None
iTool Developer’s Guide Predefined iTool File Writers

188 Chapter 9: Creating a File Writer
IDLitWriteISV

The iTools ISV file writer saves the current iTool state, including data in the data
manager, visualizations, annotations, and operation property settings to a file with the
extension .isv. ISV files can be restored by launching an iTool and selecting the file
using the File → Open menu item.

Registered Properties

None

IDLitWriteJPEG

The iTools JPEG file writer uses the IDL WRITE_JPEG procedure to write
compressed images to files. JPEG (Joint Photographic Experts Group) is a
standardized compression method for full-color and gray-scale images.

Registered Properties

QUALITY — 1An integer specifying the quality index, in the range of 0 (terrible) to
100 (excellent) for the JPEG file. The default value is 75, which corresponds to very
good quality. Lower values of QUALITY produce higher compression ratios and
smaller files.

IDLitWritePICT

The iTools PICT file writer uses the IDL WRITE_PICT procedure to write an image
and its color table vectors to a PICT (version 2) format image file. The PICT format is
used by Apple Macintosh computers.

Registered Properties

None

IDLitWritePNG

The iTools PNG file writer uses the IDL WRITE_PNG procedure to write an image
to a Portable Network Graphics (PNG) file. The data in the file is stored using
lossless compression with either 8 or 16 data bits per channel, based on the input IDL
variable type.

Registered Properties

None
Predefined iTool File Writers iTool Developer’s Guide

Chapter 9: Creating a File Writer 189
IDLitWriteTIFF

The iTools TIFF file writer uses the IDL WRITE_TIFF procedure to write TIFF files.

Registered Properties

None
iTool Developer’s Guide Predefined iTool File Writers

190 Chapter 9: Creating a File Writer
Creating a New File Writer

The process of creating an visualization type is outlined in the following sections:

• “Creating an Init Method” on page 190

• “Creating a Cleanup Method” on page 194

• “Creating a GetProperty Method” on page 195

• “Creating a SetProperty Method” on page 196

• “Creating a SetData Method” on page 197

• “Creating the Class Structure Definition” on page 199

Creating an Init Method

The file writer class Init method handles any initialization required by the file writer
object, and should do the following:

• define the Init function method

• call the Init methods of any superclasses

• register any properties of your file writer, and set property attributes as
necessary

• perform other initialization steps as necessary

• return the value 1 if the initialization steps are successful, or 0 otherwise

Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method via IDL’s keyword inheritance mechanism. The
Init method for a file writer generally looks something like this:

FUNCTION MyWriter::Init, MYKEYWORD1 = mykeyword1, $
MYKEYWORD2 = mykeyword2, ..., _REF_EXTRA = _extra

where MyWriter is the name of your file writer class and the MYKEYWORD
parameters are keywords handled explicitly by your Init function.

Use keyword inheritance (the _REF_EXTRA keyword) to pass keyword parameters
through to any called routines as necessary. (See “Keyword Inheritance” in Chapter 4
Creating a New File Writer iTool Developer’s Guide

Chapter 9: Creating a File Writer 191
of the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.)

Superclass Initialization

The file writer class Init method should call the Init method of any required
superclass. For example, if your file writer is based on an existing file writer class,
you would call that class’ Init method:

self -> SomeFileWriterClass::Init(_EXTRA = _extra)

where SomeFileWriterClass is the class definition file for the file writer on which
your new file writer is based.

Note
Your file writer class may have multiple superclasses. In general, each superclass’
Init method should be invoked by your class’ Init method.

Error Checking

Rather than simply calling the superclass Init method, it is a good idea to check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method; if the returned value is 0
(indicating failure), the current Init method also immediately returns with a value of
0:

IF (self -> SomeFileWriterClass::Init() EQ 0) THEN RETURN, 0

This convention is used in all file writer classes included with IDL. RSI strongly
suggests that you include similar checks in your own class definition files.

Keywords to the Init Method

Properties of the file writer class can be set in the Init method by specifying the
property names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitWriter class, IDLitComponent class, and
IDLitIMessaging class are available to any file writer class. See “IDLitReader
Properties”, “IDLitComponent Properties”, and “IDLitIMessaging Properties” in the
IDL Reference Guide manual.

Use keyword inheritance (the _EXTRA keyword) to pass keyword parameters
through to the superclass as necessary. (See “Keyword Inheritance” in Chapter 4 of
the Building IDL Applications manual for details on IDL’s keyword inheritance
mechanism.)
iTool Developer’s Guide Creating a New File Writer

192 Chapter 9: Creating a File Writer
Standard Base Class

While you can create your new file writer class from any existing file writer class, in
many cases, file writer classes you create will be subclassed directly from the base
class IDLitWriter:

IF (self -> IDLitWriter::Init(Extensions, TYPES = types, $
_EXTRA = _extra) EQ 0) $
THEN RETURN, 0

where Extensions is a string or array of strings specifying the filename extensions
readable by your file writer and types is a string or array of strings specifying the
iTool data types for which this writer is available. (See “iTool Data Types” on
page 34 for details on iTool data types.)

Note
The value of the Extensions argument is used only to display the proper filename
filter when a File Save dialog is displayed — it is not a check for the proper filetype.

The IDLitWriter class provides the base iTool file writer functionality used in the
tools created by RSI. See “Subclassing from the IDLitWriter Class” on page 199 for
details.

Return Value

If all of the routines and methods used in the Init method execute successfully, it
should indicate successful initialization by returning 1. Other file writer classes that
subclass from your file writer class may check this return value, as your routine
should check the value returned by any superclass Init methods called.

Registering Properties

File writer objects can register properties with the iTool; registered properties show
up in the property sheet interface shown in the system preferences browser (described
in “Properties of the iTools System” on page 64), and can be modified interactively
by users. The iTool property interface is described in detail in Chapter 4, “Property
Management”.

Register a property by calling the RegisterProperty method of the IDLitComponent
class:

self -> RegisterProperty, PropertyIdentifier [, TypeCode] $
[, ATTRIBUTE = value]
Creating a New File Writer iTool Developer’s Guide

Chapter 9: Creating a File Writer 193
where PropertyIdentifier is a string that uniquely identifies the property, TypeCode is
an integer between 0 and 9 specifying the property data type, and ATTRIBUTE is a
property attribute. See “Registering Properties” on page 54 for details.

Note
A file writer need not register any properties at all, if the write operation is simple.
Many of the standard iTool image file writer work without registering any
properties.

Setting Property Attributes

If a property has already been registered, perhaps by a superclass of your file writer
class, you can change the registered attribute values using the SetPropertyAttribute
method of the IDLitComponent class:

self -> SetPropertyAttribute, Identifier

where Identifier is the name of the keyword to the GetProperty and SetProperty
methods used to retrieve or change the value of this property. (The Identifier is
specified in the call to RegisterProperty either via the PropertyName argument or the
IDENTIFIER keyword.) See “Property Attributes” on page 58 for additional details.

Passing Through Caller-Supplied Property Settings

If you have included the _REF_EXTRA keyword in your function definition, you can
use IDL’s keyword inheritance mechanism to pass any “extra” keyword values
included in the call to the Init method through to other routines. One of the things this
allows you to do is specify property settings when the Init method is called; simply
include each property’s keyword/value pair when calling the Init method, and include
the following in the body of the Init method:

IF (N_ELEMENTS(_extra) GT 0) THEN $
self -> MyWriter::SetProperty, _EXTRA = _extra

where MyWriter is the name of your file writer class. This line has the effect of
passing any “extra” keyword values to your file writer class’ SetProperty method,
where the can either be handled directly or passed through to the SetProperty
methods of the superclasses of your class. See “Creating a SetProperty Method” on
page 196 for details.

Example Init Method

FUNCTION ExampleWriter::Init, _EXTRA = _extra

IF (self -> IDLitWriter::Init('ppm', TYPE='IDLIMAGE', $
NAME='Portable Pixmap (PPM) File', $
iTool Developer’s Guide Creating a New File Writer

194 Chapter 9: Creating a File Writer
DESCRIPTION="PPM File Writer", $
_EXTRA = _extra) EQ 0) THEN $
RETURN, 0

RETURN, 1

END

Discussion

The ExampleWriter class is based on the IDLitWriter class (discussed in
“Subclassing from the IDLitWriter Class” on page 199). As a result, all of the
standard features of an iTool file writer class are already present. We don’t define any
keyword values to be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword values through to methods called
within the Init method. The ExampleWriter Init method does the following things:

1. Calls the Init method of the superclass, IDLitWriter. We specify a list of
accepted filename extensions (only ppm, in this case) via the Extensions
argument, and set the TYPES keyword. We include a description of the writer
via the DESCRIPTION keyword. Finally, we use the _EXTRA keyword
inheritance mechanism to pass through any keywords provided when the
ExampleWriter Init method is called.

2. Returns the integer 1, indicating successful initialization.

Creating a Cleanup Method

The file writer class Cleanup method handles any cleanup required by the file writer
object, and should do the following:

• destroy any pointers or objects created by the file writer

• call the superclass’ Cleanup method

Calling the superclass’ cleanup method will destroy any objects created when the
superclass was initialized.

Note
If your file writer class is based on the IDLitWriter class, and does not create any
pointers or objects of its own, the Cleanup method is not strictly required. It is
always safest, however, to create a Cleanup method that calls the superclass’
Cleanup method.

See “IDLitWriter::Cleanup” in the IDL Reference Guide manual for additional
details.
Creating a New File Writer iTool Developer’s Guide

Chapter 9: Creating a File Writer 195
Example Cleanup Method

PRO ExampleWriter::Cleanup

;; Cleanup superclass
self -> IDLitWriter::Cleanup

END

Discussion

Since our file writer object does not have any instance data of its own, the Cleanup
method simply calls the superclass Cleanup method.

Creating a GetProperty Method

The file writer class GetProperty method retrieves property values from the file writer
object instance or from instance data of other associated objects. It should retrieve the
requested property value, either from the file writer object’s instance data or by
calling another class’ GetProperty method.

Note
Any property registered with a call to the RegisterProperty method must be listed as
a keyword to the GetProperty method either of the visualization class or one of its
superclasses.

Note
A file writer need not register any properties at all, if the write operation is simple.
Many of the standard iTool image file writer work without registering any
properties.

See “IDLitWriter::GetProperty” in the IDL Reference Guide manual for additional
details.

Example GetProperty Method

PRO ExampleWriter::GetProperty, _REF_EXTRA = _extra

IF (N_ELEMENTS(_extra) GT 0) THEN $
self -> IDLitWriter::GetProperty, _EXTRA = _extra

END
iTool Developer’s Guide Creating a New File Writer

196 Chapter 9: Creating a File Writer
Discussion

The GetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the file writer. Since the file writer we are creating has
no properties of its own, there are no keywords explicitly defined. Note the use of the
keyword inheritance mechanism to allow us to get properties from the
ExampleWriter class’ superclasses without knowing the names of the properties.

Since our ExampleWriter class has no properties of its own, we simply call the
superclass’ GetProperty method, passing in all of the keywords stored in the
_EXTRA structure.

Creating a SetProperty Method

The file writer SetProperty method stores property values in the file writer object’s
instance data. It should set the specified property value, either by storing the value
directly in the visualization object’s instance data or by calling another class’
SetProperty method.

Note
Any property registered with a call to the RegisterProperty method must be listed as
a keyword to the SetProperty method either of the visualization class or one of its
superclasses.

Note
A file writer need not register any properties at all, if the write operation is simple.
Many of the standard iTool image file writer work without registering any
properties.

See “IDLitWriter::SetProperty” in the IDL Reference Guide manual for additional
details.

Example SetProperty Method

PRO ExampleWriter::SetProperty, _EXTRA = _extra

IF (N_ELEMENTS(_extra) GT 0) THEN $
self -> IDLitWriter::SetProperty, _EXTRA = _extra

END

Discussion

The SetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the visualization type. Since the file writer we are
Creating a New File Writer iTool Developer’s Guide

Chapter 9: Creating a File Writer 197
creating has no properties of its own, there are no keywords explicitly defined. Note
the use of the keyword inheritance mechanism to allow us to set properties from the
ExampleWriter class’ superclasses without knowing the names of the properties.

Using the N_ELEMENTS function, we check to see whether any properties were
specified via the keyword inheritance mechanism. If any keywords were specified,
we call the superclass’ SetProperty method, passing in all of the keywords stored in
the _EXTRA structure.

Creating a SetData Method

The file writer SetData method does the work of the file writer, extracting data from
the selected iTool data object and writing the data to a file using some method. If the
process is successful, the SetData method must return 1 for success.

In our example, we write the selected data to a Portable Pixmap (PPM) file. As a
result, we do some additional checking to ensure that the data that the user has
selected can be displayed as an image.

See “IDLitWriter::SetData” in the IDL Reference Guide manual for additional
details.

Example SetData Method

FUNCTION ExampleWriter::SetData, oImageData

; Prompt user for a file in which to save the data
strFilename = self -> GetFilename()
IF (strFilename EQ '') THEN $

RETURN, 0 ; failure

; Check validity of the input data object
IF (~ OBJ_VALID(oImageData)) THEN BEGIN

self -> ErrorMessage, ['Invalid image data object'], $
TITLE = 'Error', SEVERITY = 2

RETURN, 0 ; failure
ENDIF

; Check the iTool data type of the selected data object.
; If the data is not of a type that can be written to an
; image file, display an error message.
oData = oImageData -> GetByType("IDLIMAGE", COUNT = count)
IF (count EQ 0) THEN $;; no image, image pixels?

oData = oImageData -> GetByType("IDLIMAGEPIXELS", $
COUNT = count)

IF (count EQ 0) THEN $;; no image, array 2d?
oData = oImageData -> GetByType("IDLARRAY2D", COUNT = count)
iTool Developer’s Guide Creating a New File Writer

198 Chapter 9: Creating a File Writer
IF (count EQ 0) THEN BEGIN
self -> ErrorMessage, $

["Invalid data provided to file writer."], $
TITLE="Error", SEVERITY = 2

RETURN, 0 ; failure
END

; Turn a 1-D object array into a scalar object.
oData = oData[0]

; Determine whether the data is an image.
isImage = obj_isa(oData, "IDLitDataIDLImage")

; If data is an image, get image pixels, otherwise
; turn data into an image.
IF (isImage NE 0) THEN BEGIN

result = oData -> GetData(image, 'ImagePixels')
ENDIF ELSE BEGIN

result = oData -> GetData(image)
ENDELSE

; Check the result of the GetData method.
IF (result EQ 0) THEN BEGIN

self -> ErrorMessage, ['Error retrieving image data'], $
TITLE = 'Error', SEVERITY = 2

RETURN, 0 ; failure
ENDIF

; Get number of dimensions of image array.
ndim = SIZE(image, /N_DIMENSIONS)

; Write to a PPM file. Use REVERSE to make image appear
; with correct orientation.
WRITE_PPM, strFilename, REVERSE(image, ndim)

; Return 1 for success.
RETURN, 1

END

Discussion

The SetData method accepts an IDLitData object (oImageData) as its input
parameter. Before processing the input data, the method prompts the user for a file in
which to save the image, using the GetFilename method of the IDLitWriter object.

After securing a filename, the method proceeds to check the input data object. First it
checks to make sure that the input object is valid. Then it attempts to retrieve data of
an appropriate iTool data type from the data object; in this example, the method tries
Creating a New File Writer iTool Developer’s Guide

Chapter 9: Creating a File Writer 199
to extract an data of one of the following types using the GetByType method of the
IDLitData class:

• IDLIMAGE

• IDLIMAGEPIXELS

• IDLARRAY2D

If no data of any of these types is found, the method displays an error message and
exits.

Once the method has obtained an appropriate data object, it checks to determine
whether the data object is an IDLitDataIDLImage object; if so, it attempts to retrieve
the image pixels from the data object; otherwise it simply retrieves the data array. The
data retrieved by the GetData method is stored in the variable image. The method
then checks the return value from the GetData method to determine whether the
returned value is valid.

Using the valid image data, the method determines the number of dimensions and
then uses the WRITE_PPM procedure to create an image file. The image data must
be processed by the REVERSE function in order to make it appear in the output file
with the correct orientation.

Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
data types of those fields. The object class structure must have been defined before
any objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure
named ObjectClass__define (where ObjectClass is the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle” in Chapter 22 of the Building IDL Applications manual.

Subclassing from the IDLitWriter Class

The IDLitWriter class is the base class for all iTool file writers. In almost all cases,
new file will be subclassed either from the IDLitWriter class or from a class that is a
subclass of IDLitWriter.

See “IDLitWriter” in the IDL Reference Guide manual for details on the methods
properties available to classes that subclass from IDLitWriter.
iTool Developer’s Guide Creating a New File Writer

200 Chapter 9: Creating a File Writer
Example Class Structure Definition

The following is the class structure definition for the ExampleWriter file writer
class. This procedure should be the last procedure in a file named
examplewriter__define.pro.

PRO ExampleWriter__Define

struct = { ExampleWriter, $
INHERITS IDLitWriter $

}

END

Discussion

The purpose of the structure definition routine is to define a named IDL structure
with structure fields that will contain the visualization object instance data. The
structure name should be the same as the visualization’s class name — in this case,
ExampleWriter.

Like many iTool file writer classes, ExampleWriter is created as a subclass of the
IDLitWriter class. File writer classes that subclass from IDLitWriter class inherit all
of the standard iTool file writer features, as described in “Subclassing from the
IDLitWriter Class” on page 199.

The ExampleWriter class has no instance data of its own. For a more complex
example, see “Example: TIFF File Writer” on page 203.
Creating a New File Writer iTool Developer’s Guide

Chapter 9: Creating a File Writer 201
Registering a File Writer

Before a file writer can be used by an iTool to write a file, the file writer’s class
definition must be registered as being available to the iTool. Registering a file writer
with the iTool links the class definition file that contains the actual IDL code that
defines the file writer with a simple string that names the writer. Code that calls a file
writer in an iTool uses the name string to specify which writer should be created.

Using IDLitTool::RegisterFileWriter

In most cases, you will register a file writer with the iTool in the iTool’s class Init
method. Registration ensures that the file writer is available when the iTool attempts
to use it to write a file. (See “Creating a New iTool Class” on page 69 for details on
the iTool class Init method.)

To register a file writer, call the IDLitTool::RegisterFileWriter method:

self -> RegisterFileWriter, Writer_Type, WriterType_Class_Name, $
ICON = icon

where Writer_Type is the string you will use when referring to the file writer,
WriterType_Class_Name is a string that specifies the name of the class file that
contains the file writer’s definition, and icon is a string containing the name of a
bitmap file to be used in the preferences browser.

Note
The file WriterType_Class_Name__define.pro must exist somewhere in
IDL’s path for the file writer to be successfully registered.

See “IDLitTool::RegisterFileWriter” in the IDL Reference Guide manual for details.

Specifying Useful Properties

You can set any property of the IDLitWriter and IDLitComponent classes when
registering a file writer. The following properties may be of particular interest:

ICON

Set this property to a string value giving the name of an icon to be associated with this
object. Typically, this property is the name of a bitmap file to be used when
displaying the object in a tree view. See “Icon Bitmaps” on page 28 for details on
where bitmap icon files are located.
iTool Developer’s Guide Registering a File Writer

202 Chapter 9: Creating a File Writer
Unregistering a File Writer

If you are creating a new iTool from an existing iTool class, you may want to remove
a file writer registered for the existing class from your new tool. This can be useful if
you have an iTool class that implements all of the functionality you need, but which
registers a file writer you don’t want included in your iTool. Rather than recreating
the iTool class to remove the file writer, you could create your new iTool class in such
a way that it inherits from the existing iTool class, but unregisters the unwanted file
writer.

Unregister a file writer by calling the IDLitTool::UnregisterFileWriter method in the
Init method of your iTool class:

self -> UnregisterFileWriter, identifier

where identifier is the string name used when registering the file writer.

For example, suppose you are creating a new iTool that subclasses from a standard
iTool that is based on the IDLitToolbase class. If you wanted your new tool to behave
just like a standard tool, with the exception that it would not export PNG files, you
could include the following method call in your iTool’s Init method:

self -> UnregisterFileWriter, 'PNG File Writer'

Finding the Identifier String

To find the string value used as the identifier parameter to the UnregisterFileWriter
method, you must inspect the class file that registers the file writer. In the case of our
example, you would inspect the file idlittoolbase__define.pro to find the
following call to the RegisterFileWriter method:

self -> RegisterFileWriter, 'PNG File Writer', 'IDLitReadPNG'

The first argument to the RegisterFileWriter method ('PNG File Writer') is the
string name of the file writer.
Unregistering a File Writer iTool Developer’s Guide

Chapter 9: Creating a File Writer 203
Example: TIFF File Writer

This example creates a file writer to write TIFF format files. The TIFF file writer is
included in the file idlitwritetiff__define.pro, located in the IDL
distribution in the lib/itools/components subdirectory of the main IDL
directory.

Class Definition File

The class definition for idlitwritetiff consists of an Init method, a SetData
method, and a class structure definition routine. As with all object class definition
files, the class structure definition routine is the last routine in the file, and the file is
given the same name as the class definition routine (with the suffix .pro appended).

Init Method

FUNCTION IDLitWriteTIFF::Init, _EXTRA = _extra

IF (self -> IDLitWriter::Init('tiff', TYPES="IDLIMAGE", $
NAME="Tag Image File Format", $
DESCRIPTION="Tag Image File Format (TIFF)", $
_EXTRA = _extra) EQ 0) THEN $
RETURN, 0

RETURN, 1

END

Discussion

The first item in our class definition file is the Init method. The Init method’s function
signature is defined first, using the class name IDLitWriteTIFF. Note the use of the
_EXTRA keyword inheritance mechanism; this allows any keywords specified in a
call to the Init method to be passed through to routines that are called within the Init
method even if we do not know the names of those keywords in advance.

Next, we call the Init method of the superclass. In this case, we are creating a subclass
of the IDLitWriter class; this provides us with all of the standard iTool file writer
functionality automatically. Any “extra” keywords specified in the call to our Init
method are passed to the IDLitWriter::Init method via the keyword inheritance
mechanism.

We specify a list of accepted filename extensions (tiff, in this case) via the
Extensions argument, and set the TYPES keyword equal to the iTool data type of data
that can be written using this file writer. (The iTool data types specified by the
iTool Developer’s Guide Example: TIFF File Writer

204 Chapter 9: Creating a File Writer
TYPES keyword must match the iTool data type of the data selected in the iTool
Export Wizard in order for the file writer to be available for selection.)

We specify a value for the NAME property of the writer object (this is displayed in
the system preferences dialog) and include a description of the writer via the
DESCRIPTION keyword. Finally, we use the _EXTRA keyword inheritance
mechanism to pass through any keywords provided when the Init method is called.

Finally, we return the value 1 to indicate successful initialization.

SetData Method

FUNCTION IDLitWriteTIFF::SetData, oImageData

strFilename = self -> GetFilename()
IF (strFilename EQ '') THEN $

RETURN, 0 ; failure

IF (~ OBJ_VALID(oImageData)) THEN BEGIN
MESSAGE, "Invalid image data object.", /CONTINUE
RETURN, 0 ; failure

ENDIF

result = oImageData -> GetData(image, 'ImagePixels')

if (result eq 0) then begin
MESSAGE, "Error retrieving image data.", /CONTINUE
return, 0 ; failure

endif

ndim = SIZE(image, /N_DIMENSIONS)
CASE ndim Of

2: Begin ; color indexed
success = oImageData -> GetData(palette, 'Palette')
; Check if we have palette data.
IF (N_ELEMENTS(palette) GT 0) THEN BEGIN

red = REFORM(palette[0,*])
green = REFORM(palette[1,*])
blue = REFORM(palette[2,*])

ENDIF
END

3: BEGIN
dims = SIZE(image, /DIMENSIONS)
; If we have more than 3 channels, just keep
; the first 3 (assumed to be RGB).
IF (dims[0] NE 3) THEN $

image = image[0:2, *, *]
Example: TIFF File Writer iTool Developer’s Guide

Chapter 9: Creating a File Writer 205
END

ELSE: RETURN, 0 ; failure

ENDCASE

; The REVERSE ensures that other applications will read in
; the image right side up.
WRITE_TIFF, strFilename, REVERSE(image, ndim), $

RED = red, GREEN = green, BLUE = blue

RETURN, 1 ; success

END

Discussion

The SetData method accepts an IDLitData object (oImageData) as its input
parameter. Before processing the input data, the method prompts the user for a file in
which to save the image, using the GetFilename method of the IDLitWriter object.

After securing a filename, the method proceeds to check the input data object. First it
checks to make sure that the input object is valid. Then it attempts to retrieve data of
the iTool data type ImagePixels from the data object, using the GetData method,
storing the result in the variable image. The method then checks the return value
from the GetData method to determine whether the returned value is valid.

Using the valid image data, the method determines the number of dimensions. If the
image array has two dimensions, the method checks the original input data object for
the presence of a palette. If the palette is present, the red, green, and blue vectors are
reformed for later use by the WRITE_TIFF routine.

If the image array has three dimensions, it the dimensions are assumed to be the red,
green, and blue channels.

Finally, the method uses the WRITE_TIFF procedure to create an image file. The
image data must be processed by the REVERSE function in order to make it appear
in the output file with the correct orientation.

Class Definition

PRO IDLitWriteTIFF__Define

struct = {IDLitWriteTIFF, $
inherits IDLitWriter $

}
END

Discussion
iTool Developer’s Guide Example: TIFF File Writer

206 Chapter 9: Creating a File Writer
Our class definition routine is very simple. We create an IDL structure variable with
the name IDLitWriteTIFF, specifying that the structure inherits from the
IDLitWriter class. The object has no instance data, and thus no instance data fields.
Example: TIFF File Writer iTool Developer’s Guide

Part III: Modifying
the iTool User

Interface

Chapter 10:

iTool User Interface
Architecture
This chapter provides an overview of the iTool user interface architecture.
Overview . 210 User Interface Objects 212
iTool Developer’s Guide 209

210 Chapter 10: iTool User Interface Architecture
Overview

The iTool user interface architecture is designed to preserve the separation between
the functionality provided by an iTool application and the manner in which that
functionality is presented to the user. While the process of creating a user interface
for the iTool application is complex, the idea is simple: the iTool can choose from any
number of user interface styles that present information to the user in unique ways,
depending on the operating environment.

While the initial release of the iTool component framework includes only one user
interface style, created from IDL’s graphical widget interface toolkit, the iTool
framework design allows for the creation of additional user interface styles. Creating
new interface elements, or even an entirely new user interface, does not require
alterations to the underlying iTool implementation.

Note
In the first release of the IDL iTools system, the functionality necessary to create
entirely new user interface styles is not fully defined. Future versions of the iTool
system will provide the capability to create additional user interface styles.

Working within an existing interface style, you can add several different types of user
interface elements to your iTools. In rough order of increasing complexity of
implementation, iTool user interface elements include:

• Simple additional interface elements such as custom messages that appear in
the iTool status area, informational dialogs, and simple yes-or-no type
interactive user dialogs. These items can be added to an iTool using built-in
methods of the IDLitIMessaging class. Built-in interface elements are
described in Chapter 11, “Using iTool User Interface Elements”.

• Modal dialogs that allow the user to provide complex information before an
action is performed by the iTool. Dialog-based interface elements can be
simple, perhaps allowing the user to enter a single numerical value, or
complex, as shown by the iTool Curve Fitting operation’s parameter-
specification dialog. Dialog-based interfaces require the creation of a user
interface service, which can then call code that creates the appropriate dialog
interface for the platform and iTool interface style. User interface services are
described in Chapter 12, “Creating a User Interface Service”.

• iTool panels, which are non-modal collections of interface elements that are
attached to the iTool visualization window. Panels are useful when complex
controls must always be visible alongside a visualization; the iVolume and
Overview iTool Developer’s Guide

Chapter 10: iTool User Interface Architecture 211
iImage tools provide examples of a panel interface. Panel interfaces are
described in Chapter 13, “Creating a User Interface Panel”.
iTool Developer’s Guide Overview

212 Chapter 10: iTool User Interface Architecture
User Interface Objects

The iTool user interface object is an instance of the class IDLitUI. The UI object
provides a way for the iTool to communicate with interface elements created using
the IDL widget toolkit. As the center of communication between the user interface
and the underlying iTool functionality, the UI object provides the following
functionality:

• Access to and communication with the underlying iTool object.

• Registration and management of dialogs and other sub-elements of the user
interface that are used by the iTool to perform specific tasks.

• Registration of user interface elements that are part of the iTool display itself.

One of the key features of the iTool user interface is the ability to adapt to the
contents of the tool, sensitizing and desensitizing menu items or displaying dialogs or
user interface panels as necessary. The IDLitUI object makes this adaptability
possible while maintaining the slender link between tool functionality and user
interface. The following features of the IDLitUI object make these features possible:

GetTool Method

The IDLitUI::GetTool method provides the means to retrieve an object reference to
the underlying iTool object from user interface code. The retrieved reference can then
be used to access data stored in iTool objects (property values, for example) and to
call other iTool object methods.

UI Service Registration Methods

The IDLitUI::RegisterUIService and IDLitUI::UnRegisterUIService methods allow
user interface code to register (and unregister) user interface services as being
available for use by the iTool interface.

Note
User interface services are more normally registered by an iTool launch routine,
using the ITREGISTER procedure.

User interface services are discussed in detail in Chapter 12, “Creating a User
Interface Service”.
User Interface Objects iTool Developer’s Guide

Chapter 10: iTool User Interface Architecture 213
Widget Registration Methods

The IDLitUI::RegisterWidget and IDLitUI::UnRegisterWidget methods allow user
interface code to register (and unregister) widget callback routines as the target of
OnNotify messages. Registration allows the user interface to receive messages
generated by iTool components and to react accordingly.

Widget registration is discussed in detail in Chapter 13, “Creating a User Interface
Panel”.

AddOnNotifyObserver Method

The IDLitUI::AddOnNotifyObserver method allows user interface code to register to
receive messages sent via calls to the OnNotify methods of iTool components. This
mechanism allows the user interface to change in response to changes in the
underlying iTool.

Use of the iTool messaging system is discussed in detail in Chapter 13, “Creating a
User Interface Panel”.

DoAction Method

The IDLitUI::DoAction method makes it possible for a user interface element to
launch execution of an operation within the underlying iTool.

Use of the DoAction method to initiate execution of operations is discussed in
Chapter 12, “Creating a User Interface Service”.
iTool Developer’s Guide User Interface Objects

214 Chapter 10: iTool User Interface Architecture
User Interface Objects iTool Developer’s Guide

Chapter 11:

Using iTool User
Interface Elements
This chapter describes user interface elements that can be incorporated into an iTool without the
need to write any user interface code.
Overview . 216
Status Messages . 217

Prompts . 219
Informational Messages 221
iTool Developer’s Guide 215

216 Chapter 11: Using iTool User Interface Elements
Overview

The IDLitIMessaging class provides methods that allow you to accept and return
feedback via the iTool interface without writing any interface code yourself. For
many applications, adding the ability to provide status information, prompt the user
for simple input, and display appropriate error messages to the standard iTool
interface is sufficient; in these cases, no additional code is needed to create and
display user interfaces.

Note
The simple dialogs presented by the IDLitIMessaging methods are similar to those
displayed by the IDL DIALOG_MESSAGE function. Since the initial iTools
release supports only one user interface style (built using the IDL widget interface
toolkit) it may be tempting to use DIALOG_MESSAGE rather than the methods
described in this chapter. As the iTools framework matures, however, additional
user interface styles may be created either by RSI or by third-party developers.
Using the built-in IDLitIMessaging methods will ensure that your iTool
applications continue to function properly when other interface styles are available.

This chapter discusses the use of the basic user interface elements provided by the
IDLitIMessaging class. If your application requires a more complex interface, see
Chapter 12, “Creating a User Interface Service” or Chapter 13, “Creating a User
Interface Panel”.
Overview iTool Developer’s Guide

Chapter 11: Using iTool User Interface Elements 217
Status Messages

Status messages are simple text messages displayed in a way that does not impede the
user’s operation of the iTool. In the standard iTool user interface created using the
IDL widget toolkit, status messages are text strings displayed at the bottom of the
iTool window.

The IDLitIMessaging class provides two methods that display status messages. See
“IDLitIMessaging” in the IDL Reference Guide manual for details.

StatusMessage

The IDLitIMessaging::StatusMessage method displays a string value. In the standard
iTool interface created using the IDL widget toolkit, status messages appear in the
status area at the bottom left corner of the iTool window, as shown in Figure 11-1.

In the standard set of iTools provided with IDL, the status area is used to display
status information for operations or informational messages pertaining to the
currently selected object or manipulator.

The following code places the text “My Status Message” in the status area:

self -> StatusMessage, 'My Status Message'

ProbeStatusMessage

The IDLitIMessaging::ProbeStatusMessage method displays a string value. In the
standard iTool interface created using the IDL widget toolkit, probe status messages
appear at the bottom right corner of the iTool window, as shown in Figure 11-1.

Figure 11-1: The status areas of a standard iTool.
iTool Developer’s Guide Status Messages

218 Chapter 11: Using iTool User Interface Elements
In the standard set of iTools provided with IDL, the probe status area is used to
display the position of the cursor within the iTool window.

The following code places the text “X: 300, Y:146” in the status area:

self -> ProbeStatusMessage, 'X: 300, Y:146'

In most cases, the values displayed in the probe status area have some relationship to
the position of the cursor or to the action performed by the current manipulator.
Status Messages iTool Developer’s Guide

Chapter 11: Using iTool User Interface Elements 219
Prompts

Prompts solicit information from the user. Prompts are generally presented as modal
dialogs, meaning that the user must respond to the prompt before operation of the
iTool can continue.

The IDLitIMessaging class provides two methods that prompt for user input. See
“IDLitIMessaging” in the IDL Reference Guide manual for details.

PromptUserYesNo

The IDLitIMessaging::PromptUserYesNo method displays a prompt string along
with Yes and No buttons. In the standard iTool interface created using the IDL widget
toolkit, Yes/No prompts appear as modal dialogs as shown in Figure 11-2.

Note
The PromptUserYesNo function returns 1 if the dialog executed properly. You must
check the value stored in the variable specified as the Answer argument to
determine which button the user pressed.

The following code asks the user a Yes or No question and performs some action if
the dialog returns properly and the value of the returned variable answer is equal to
1 (as would be the case if the user clicked Yes):

status = self -> PromptUserYesNo('Overwrite Variable: Plot_Y', $
answer, TITLE='Overwrite Variable?')

IF (status NE 0 && answer EQ 1) THEN BEGIN
; do something...

ENDIF

The value of the TITLE keyword is displayed in the title bar of the dialog box.

Figure 11-2: Yes/No and Text Prompt dialogs.
iTool Developer’s Guide Prompts

220 Chapter 11: Using iTool User Interface Elements
PromptUserText

The IDLitIMessaging::PromptUserText method displays a prompt string and a text-
entry field along with OK and Cancel buttons. In the standard iTool interface created
using the IDL widget toolkit, text prompts appear as modal dialogs as shown in
Figure 11-2.

Note
The PromptUserText function returns 1 if the user clicks the OK button, or 0 if the
user clicks the Cancel button.

The following code asks the user to enter a text string, which will be stored in the
variable stringName:

status = self -> PromptUsertext('Enter a string value', $
stringName, TITLE = 'Name the Created Object')

The value of the TITLE keyword is displayed in the title bar of the dialog box. The
variable status will contain a 1 if the user clicks OK, or a 0 if the user clicks
Cancel.
Prompts iTool Developer’s Guide

Chapter 11: Using iTool User Interface Elements 221
Informational Messages

Informational Messages inform the user that some condition has occurred in the iTool
application. The condition may be an error, but it can also be any other occurrence of
which the user should be informed. Informational messages are presented as modal
dialogs, generally with a single OK button that dismisses the dialog.

The IDLitIMessaging class provides the ErrorMessage method to display
informational messages of all sorts. See “IDLitIMessaging” in the IDL Reference
Guide manual for details.

ErrorMessage

The IDLitIMessaging::ErrorMessage method displays an informational text message
to the user. In the standard iTool interface created using the IDL widget toolkit,
informational messages appear as modal dialogs as shown in Figure 11-3.

Informational messages can use any of three severity codes, indicating to the user
whether the message is merely informational, is a warning, or reports a serious error.
While the severity setting does not alter the behavior of the dialog, which can only be
dismissed by the user, it can alter the appearance of the dialog. For example, the
dialog shown in Figure 11-3 has a severity setting of 0, or “Informational”.

The following code displays an informational message:

self -> ErrorMessage, ['The following variables were exported:', $
'Plot_Y'], SEVERITY = 0, TITLE = 'Export Complete'

The value of the TITLE keyword is displayed in the title bar of the dialog box.

In addition to the ErrorMessage method, the IDLitIMessaging class provides the
SignalError method, which reports an error condition to the iTool system but which
does not display the message to the user. See “IDLitIMessaging” in the IDL
Reference Guide manual for details.

Figure 11-3: An informational message dialog.
iTool Developer’s Guide Informational Messages

222 Chapter 11: Using iTool User Interface Elements
Informational Messages iTool Developer’s Guide

Chapter 12:

Creating a User
Interface Service
This chapter describes the process of creating a user interface service.
Overview . 224
Predefined iTool UI Services 225
Creating a New UI Service 226

Registering a UI Service 231
Executing a User Interface Service 233
Example: Changing a Property Value . . . 234
iTool Developer’s Guide 223

224 Chapter 12: Creating a User Interface Service
Overview

A UI service is an iTool component object class that defines how and when a user
interface element is presented to an iTool user. UI services provide a way to separate
platform-independent iTool functionality from platform-dependent user interface
code. When an iTool needs to display a graphical interface, it simply calls the
appropriate UI service to display the interface; the iTool itself does not need to know
anything at all about the platform on which it is running. Decisions about how to
display the desired interface are left to the UI service, which can choose from any
number of options based on the platform and user interface style in use.

Note
In the initial iTools release, only one user interface style is supplied: the IDL widget
interface toolkit. As the iTools framework continues to grow, additional user
interface styles may be created either by RSI or by third-party developers.

Creating and Using a UI Service

To create and use a new iTool UI service, you will do the following:

• Create an IDL function that displays the user interface elements. See “Creating
a New UI Service” on page 226 for details.

• Register the new UI service with the iTools system. See “Registering a UI
Service” on page 231 for details.

• Execute the UI service from iTool code. See “Executing a User Interface
Service” on page 233 for details.
Overview iTool Developer’s Guide

Chapter 12: Creating a User Interface Service 225
Predefined iTool UI Services

The iTool system distributed with IDL includes a number of pre-defined UI services.
These UI services are registered with the iTool system, which means that you can call
them from any operation, visualization, or other iTool component using the
DoUIService method of the IDLitTool class.

The majority of the pre-defined UI services provide interface elements that are
specific to the standard iTool implementation. In most cases, you do not need to call
these services directly; using the existing iTool operation or visualization code that
calls the UI service is sufficient. If you are creating a new UI service, you may want
to inspect the code for some of the standard UI services — they are located in the
lib/itools/ui_widgets subdirectory of the IDL directory and have file names of
the form idlitui*.pro.

The following UI services are generally useful; you may wish to include calls to these
services in your own iTool operation or visualization code.

Hourglass Cursor Service

Displays the hourglass cursor. The hourglass cursor is displayed until processing
completes and a new IDL widget event is processed, at which time the previous
cursor is reinstated.

File Name

idlituihourglass.pro

Registered Service Name

HourGlassCursor

Example

void = oTool -> DoUIService('HourGlassCursor', self)
iTool Developer’s Guide Predefined iTool UI Services

226 Chapter 12: Creating a User Interface Service
Creating a New UI Service

A user interface service is responsible for creating a user interface element that is
displayed when an iTool user takes some action. A simple UI service may do no more
than display the “hourglass” cursor while an operation is being performed; more
complicated UI services may be small applications unto themselves.

For simple operations the UI service routine can contain everything necessary to
implement the UI service. For more complex interfaces, however, it is often practical
to separate the actual user interface code (that is, the widget creation and event-
handling routines) from the logic of the UI service itself. The latter is the strategy
used by many of the UI services included with the standard iTools.

The process of creating a user interface service is outlined in the following sections:

• “Creating the UI Service Routine” on page 226

• “Creating Supporting User Interface Elements” on page 229

Creating the UI Service Routine

The user interface service routine performs the following tasks:

• Manages changes to any properties of the object on which the user interface
element was invoked.

• Manages the display of the user interface element.

To accomplish these things, the UI service routine needs a reference to the iTool
component on which the service will act, and a reference to the IDLitUI object
associated with the current iTool. As a result, the user interface service routine has the
following signature:

FUNCTION ServiceName, oUI, oRequester

where ServiceName is the name of the function, oUI is an object reference to the
IDLitUI object associated with the iTool, and oRequester is an object reference to the
iTool component specified in the call to the DoUIService method.

Note
ServiceName is not necessarily the same as the registered name of the service used
in the call to the DoUIService method. The registered name is defined by the call to
the ITREGISTER procedure. See “Registering a UI Service” on page 231 for
details.
Creating a New UI Service iTool Developer’s Guide

Chapter 12: Creating a User Interface Service 227
Return Value

The user interface service routine should return 1 if the action succeeds, or 0
otherwise.

Retrieving Property Information

The oRequester argument to the user interface service function contains an object
reference to the iTool component on which the UI service was invoked. Use this
reference to retrieve any properties of the object that are relevant to the operation
being performed by the user interface.

For example, the standard ScaleFactor user interface service displays a dialog that
lets the user set the SCALE_FACTOR property of an object. The service uses the
following statement to retrieve the current scale factor from the selected object:

oRequester -> GetProperty, SCALE_FACTOR = factor

Retrieving Widget Information

The oUI argument to the user interface service function contains an object reference
to the IDLitUI object associated with the current iTool. You can use this reference to
retrieve the IDL widget identifier of the widget that is the group leader of the iTool
user interface itself (the iTool window); the ID is stored in the GROUP_LEADER
property of the IDLitUI object. Having this widget ID allows you to retrieve screen
geometry information that allows you to calculate the position at which your user
interface should be displayed.

For example, the ScaleFactor user interface service uses the following code to
calculate the X and Y offsets that will be used to position its own user interface over
the current iTool:

; Retrieve the widget ID of top-level base.
oUI -> GetProperty, GROUP_LEADER = groupLeader

IF (WIDGET_INFO(groupleader, /VALID)) THEN BEGIN
geom = WIDGET_INFO(groupLeader, /GEOMETRY)
xoffset = geom.scr_xsize + geom.xoffset - 80
yoffset = geom.yoffset + (geom.ysize - 400)/2

ENDIF

The UI service goes on to use the calculated xoffset and yoffset values when
positioning the IDL widgets that make up the interface displayed by the service.
iTool Developer’s Guide Creating a New UI Service

228 Chapter 12: Creating a User Interface Service
Displaying the User Interface

If the user interface being displayed by the UI service is simple, it may be convenient
to include the code for creating it directly in the definition of the user interface
service itself. For example, the following is the complete definition of the
HourGlassCursor user interface service:

FUNCTION IDLitUIHourGlass, oUI, oRequester
WIDGET_CONTROL, /HOURGLASS
RETURN, 1

END

As you can see, no information about the IDLitUI object or the selected iTool
component is used, and the displayed item itself is very simple.

In most cases, the user interface service is significantly more complex. In these cases
it is often useful to separate the routine that creates the service’s user interface from
the code that displays it. For example, the user interface for the ScaleFactor service is
displayed by the following statement:

result = IDLitwdScaleFactor(GROUP_LEADER = groupLeader, $
FACTOR = factor, XOFFSET = xoffset, YOFFSET = yoffset)

IF result EQ 1 THEN RETURN, 0

This statement calls another function — IDLitwdScaleFactor — to actually display
the required user interface elements, supplying the information retrieved by other
portions of the user interface service routine. The IDLitwdScaleFactor function
returns the scale factor value selected by the user, or returns the value 1 (indicating no
scaling) if the value supplied by the user is invalid. If the returned scale factor is 1
(either because the user entered 1 the value, or because the entered value was not a
valid value), no scaling will be performed, so the UI service itself returns the failure
value (integer 0). The process of creating user interface elements is discussed in
greater detail in “Creating Supporting User Interface Elements” on page 229.

Setting Property Information

If the user has selected new values for any of the object’s properties, those properties
values must be changed on the object by a call to the SetProperty method. In our
example, if the user sets a new scale factor, the following statement updates the
property value, notifies the selected object that the value has changed, and inserts the
change into the undo-redo transaction buffer:

oRequester -> SetProperty, SCALE_FACTOR = result

Note that not every user interface will modify properties of the selected object.
Creating a New UI Service iTool Developer’s Guide

Chapter 12: Creating a User Interface Service 229
Example

The following example routine is the full definition of the ScaleFactor user
interface service described in the previous sections. It is presented here again for
completeness, so you can see the entire function at once.

FUNCTION IDLituiScaleFactor, oUI, oRequester

; Retrieve widget ID of top-level base.
oUI -> GetProperty, GROUP_LEADER = groupLeader

; Retrieve geometry information and calculate offsets.
IF (WIDGET_INFO(groupleader, /VALID)) THEN BEGIN

screensize = GET_SCREEN_SIZE(RESOLUTION = resolution)
geom = WIDGET_INFO(groupLeader, /GEOMETRY)
xoffset = geom.scr_xsize + geom.xoffset - 80
yoffset = geom.yoffset + (geom.ysize - 400)/2

ENDIF

; Retrieve the current scale factor from the selected object.
oRequester -> GetProperty, SCALE_FACTOR = factor

; Display the IDL widget interface allowing the user to
; change the scale factor. The new scale factor is returned
; as the result of this function. If the specified value is
; not a valid scale factor, the integer 1 is returned in
; result.
result = IDLitwdScaleFactor(GROUP_LEADER = groupLeader, $

FACTOR = factor, XOFFSET = xoffset, YOFFSET = yoffset)
IF result EQ 1 THEN RETURN, 0

; Set properties on the selected object.
oRequester -> SetProperty, SCALE_FACTOR = result

; Return success.
RETURN, 1

END

Creating Supporting User Interface Elements

It is beyond the scope of this manual to provide general information on the creation of
user interfaces. For information on creating a user interface using the IDL widget
toolkit, see “Creating Graphical User Interfaces in IDL” in the Building IDL
Applications manual. The following are some suggestions for creating IDL widget
interface code for iTool user interface services.
iTool Developer’s Guide Creating a New UI Service

230 Chapter 12: Creating a User Interface Service
Place data collected by the user interface in the function’s return value

Create your user interface routine (the routine that creates the IDL widgets that make
up the user interface displayed by your UI service) as a function, returning the data
values collected by the interface in the function’s return value. If you are collecting
several values of different data types, return a structure variable containing the data.
The user interface and event-handling code should never change data or property
values within the iTool itself; all changes should be made via the SetProperty
mechanism

Be sure to clean up heap variables when the user interface exits

If your user interface code creates pointer or object heap variables, be sure to destroy
them before the interface code exits. If extra “hanging” heap variables are left
undestroyed, IDL can potentially run out of resources if the interface is displayed
numerous times.

Use the GROUP_LEADER property if it is available

Pass the widget ID contained in the GROUP_LEADER property of the IDLitUI
object to your user interface code, and set the GROUP_LEADER keyword of the top-
level base widget to this value. Setting the widget group leader to the leader of the
iTool’s own widget hierarchy ensures that your user interface will be destroyed if the
iTool itself is destroyed.
Creating a New UI Service iTool Developer’s Guide

Chapter 12: Creating a User Interface Service 231
Registering a UI Service

Before a user interface service can be called from an iTool, the routine that
implements the service must be registered with the iTool system. Registering a UI
service with the system links the file containing the actual IDL code that creates the
user interface elements with a simple string that names the UI service. Since you use
the name string in code that calls the service, the iTool itself does not need to know
anything about the display environment in which it is running.

User interface services are registered either using the ITREGISTER procedure or via
a call to the RegisterUIService method of the IDLitUI object. In most cases,
registration is accomplished via a call to the ITREGISTER procedure in an iTool’s
launch routine. A UI service can be registered at any time. In practice, you will
probably find it convenient to register UI services used by an iTool in the iTool launch
routine, unless you know the service has already been registered. For a list of UI
services that are pre-registered by the standard iTools, see “Predefined iTool UI
Services” on page 225.

Using ITREGISTER

Use the ITREGISTER routine to register a user interface service:

ITREGISTER, 'UI Service Name', 'UI_Service_Routine', /UI_SERVICE

where UI Service Name is a string you will use to call the user interface service, and
UI_Service_Routine is a string that specifies the name of the file that contains the
code for the user interface service.

Note
The file UI_Service_Name__define.pro must exist somewhere in IDL’s path
for the service definition to be successfully registered.

If a given user interface service has already been registered when the ITREGISTER
routine is called, the service will not be registered a second time. The registration can
be performed at any time in an IDL session before you attempt to call the user
interface service.

See “ITREGISTER” in the IDL Reference Guide manual for details.
iTool Developer’s Guide Registering a UI Service

232 Chapter 12: Creating a User Interface Service
Example

Suppose you have a UI service definition file named myUIService.pro, located in
a directory included in IDL’s !PATH system variable. Register this service with the
iTool system with the following command:

ITREGISTER, 'My UI Service', 'myUIService', /UI_SERVICE

The user interface service can now be invoked via the DoUIService method:

success = oTool -> DoUIService('My UI Service', self)

where oTool is an object reference to the current iTool object.

Using the RegisterUIService Method

User interface services can also be registered by a call to the RegisterUIService
method of the IDLitUI object:

self -> RegisterUIService, 'My UI Service', 'myUIService'

Note
In most cases, you do not have a reference to the IDLitUI object available, so this
method is not generally useful. We mention it here because the user interface
services registered for use by the standard iTools are registered in this way, rather
than via the ITREGISTER procedure.
Registering a UI Service iTool Developer’s Guide

Chapter 12: Creating a User Interface Service 233
Executing a User Interface Service

Once you have defined and registered a user interface service and created any
supporting user interface code, you can call the service from any iTool operation
simply by calling the DoUIService method of the IDLitTool class.

In most cases, the DoUIService method is called from the DoExecuteUI method of an
IDLitOperation or an IDLitDataOperation. For example, the following routine is the
DoExecuteUI method of an operation that calls the ScaleFactor user interface
service:

FUNCTION IDLitopScalefactor::DoExecuteUI

oTool = self -> GetTool()
IF (oTool EQ OBJ_NEW()) THEN RETURN, 0

RETURN, oTool -> DoUIService('ScaleFactor', self)

END

The GetTool method is part of the IDLitIMessaging class, which is a superclass of all
iTool operation classes; it returns an object reference to the current iTool. This
method calls the ScaleFactor user interface service with the operation itself as the
currently selected object, which allows the UI service to modify the operation’s
properties. The second argument to the DoUIService method is an object reference
that can be used by the service to modify the object’s properties.
iTool Developer’s Guide Executing a User Interface Service

234 Chapter 12: Creating a User Interface Service
Example: Changing a Property Value

This example creates a user interface service named SrvExample, which displays a
dialog that allows the user to change the NAME property of the currently selected
iTool component. The SrvExample user interface service is launched by an
IDLitDataOperation named opName.

This example is intended as a demonstration of the techniques used to create a user
interface service. In practice, you do not have to create a user interface to change the
NAME property; it can be changed more easily by altering the value in the
Visualization browser. It is conceivable, however, that you might want to provide an
interface that allows the user to change numerous properties simultaneously, with
some values being based on other user-supplied values. Similarly, you may wish to
display a dialog that allows the user to set the properties of an operation every time
that operation is executed, without forcing the user to open the Operations browser.

Creating and using the SrvExample user interface service involves the following
steps:

• Creating the SrvExample service

• Creating the SrvExample interface

• Creating an operation that calls the service

• Registering the SrvExample service

• Registering the opName operation

• Invoking the opName operation

Creating the SrvExample service

The SrvExample user interface service consists of a single function named
SrvExample, stored in a file named srvexample.pro that is located in a directory
that is included in the IDL PATH system variable.

FUNCTION SrvExample, oUI, oRequester

; Retrieve widget ID of top-level base.
oUI -> GetProperty, GROUP_LEADER = groupLeader

; Retrieve the original value of the name property
; attribute from the selected item.
oRequester -> GetProperty, NAME = origName
Example: Changing a Property Value iTool Developer’s Guide

Chapter 12: Creating a User Interface Service 235
; Display the widget UI that allows the user to choose
; a new name.
newName = wdSrvExample(NAME = origName, $

GROUP_LEADER = groupLeader)

; Set the property value.
oRequester -> SetProperty, NAME = newName

; Return success
RETURN, 1

END

Discussion

The function that implements this example service follows the pattern outlined in
“Creating the UI Service Routine” on page 226. It uses the object reference to the
IDLitUI object to retrieve the widget ID of the top-level base of the iTool user
interface, and later uses the retrieved value to set the GROUP_LEADER keyword to
the user interface routine. It uses the object reference to the “requester” object (in this
case, the iTool component that is selected in the current iTool) to retrieve the NAME
property. It then calls a routine (wdSrvExample) that displays a user interface
allowing the user to select a new value for the NAME property.

The string returned by the wdSrvExample routine is used to set the NAME property
of the selected iTool component, and the routine returns 1 for success.

Creating the SrvExample interface

The interface presented by the SrvExample user interface service consists of a set of
routines that create an IDL widget interface. The creation routine and two simple
event-handling routines are stored in a file named wdsrvexample.pro that is
located in a directory that is included in the IDL PATH system variable.

Widget Creation Function

The following function creates the widget interface that is displayed when the
SrvExample user interface service is called. The widget creation routine should be
the last routine in the file.

FUNCTION wdSrvExample, NAME = origName, TITLE = dialogTitle, $
GROUP_LEADER = groupLeader

; Check to see if a title for the dialog was supplied.
; If not, set a default title.
IF (N_ELEMENTS(dialogTitle) EQ 0) THEN $

dialogTitle='Choose a Name'
iTool Developer’s Guide Example: Changing a Property Value

236 Chapter 12: Creating a User Interface Service
; Create the dialog.
wBase = WIDGET_BASE(/COLUMN, TITLE = dialogTitle, $

GROUP_LEADER = groupLeader)
wText = WIDGET_TEXT(wBase, YSIZE = 3, $

VALUE=['The original NAME is:', origName, $
'Enter a new name:'])

wEdit = WIDGET_TEXT(wBase, VALUE = origName, /EDITABLE)
wSubBase = WIDGET_BASE(wBASE, /ROW)
wOK = WIDGET_BUTTON(wSubBase, VALUE='OK', $

EVENT_PRO='wdSrvExample_ok')
wCancel = WIDGET_BUTTON(wSubBase, VALUE='Cancel', $

EVENT_PRO='wdSrvExample_cancel')

; Create a state structure to hold important values.
state = { wOK:wOK, $

wCancel:wCancel, $
wEdit:wEdit, $
pName:PTR_NEW(/ALLOCATE) }

; Store the original property name attribute in the
; state structure.
*state.pName = origName

; Store the state structure in the user value of the
; top-level widget base.
WIDGET_CONTROL, wBase, SET_UVALUE = state

; Realize the widget hierarchy.
WIDGET_CONTROL, wBase, /REALIZE

; Call XMANAGER.
XMANAGER, 'wdSrvExample', wBase

; After XMANAGER exits, retrieve the value of the name
; property attribute from the state structure.
result = (N_ELEMENTS(*state.pName)) ? *state.pName : origName

; Free the pointer.
PTR_FREE, state.pName

; Return the new value of the name property attribute.
RETURN, result

END
Example: Changing a Property Value iTool Developer’s Guide

Chapter 12: Creating a User Interface Service 237
Discussion

It is beyond the scope of this chapter to discuss the IDL widget programming
techniques used in this example. For more information on widget programming, see
the Building IDL Applications manual. Several points are worth nothing, however.

• The widget ID of the top-level base retrieved in the SrvExample routine is
passed to this routine, and used as the value of the GROUP_LEADER keyword
to WIDGET_BASE. This ensures that if the iTool itself is minimized or closed
while the example dialog is displayed, it will be handled properly.

• The original value of the NAME property is passed to this routine, and is
stored in an IDL pointer variable within the state structure that is associated
with the dialog. This allows the event routine that actually retrieves the value
entered by the user to communicate the new value back to the widget creation
routine, but it also means that the pointer must be freed before the routine exits.

Event-handling Routines

The following event-handling procedures handle widget events generated by the
widget interface that is displayed when the SrvExample user interface service is
called.

PRO wdSrvExample_ok, event

; Get the stashed state structure from the user value
; of the top-level base widget.
WIDGET_CONTROL, event.top, GET_UVALUE = state

; Get the value from the editable text field.
WIDGET_CONTROL, state.wEdit, GET_VALUE = value

; Store the text value in a pointer so we can access
; it from the main routine
*state.pName = value

; Destroy the dialog.
WIDGET_CONTROL, event.top, /DESTROY

END

PRO wdSrvExample_cancel, event

; Nothing to do, just destroy the dialog.
WIDGET_CONTROL, event.top, /DESTROY

END
iTool Developer’s Guide Example: Changing a Property Value

238 Chapter 12: Creating a User Interface Service
Discussion

When the user clicks the OK button, the current value of the editable text widget is
placed in the pointer stored in the state structure’s pName field.

Creating an operation that calls the service

In order to launch the SrvExample user interface service, the user must be able to
select an operation that calls the DoUIService method. This example uses an
IDLitDataOperation named opName, which simply retrieves the list of currently
selected items and calls the SrvExample user interface service. The code for this
operation is stored in a file named opname__define.pro that is located in a
directory that is included in the IDL PATH system variable.

FUNCTION opName::Init, _EXTRA = _extra

; Initialize the operation, setting the "show UI" property.
; Note that this operation will operation on all iTool
; component types.
success = self -> IDLitDataOperation::Init($

NAME="Rename Component", $
DESCRIPTION="Rename an iTool component", $
/SHOW_EXECUTION_UI, TYPES='')

RETURN, success

END

FUNCTION opName::DoExecuteUI

; Get a reference to the current iTool and
; make sure it is valid.
oTool = self -> GetTool()
IF (oTool eq OBJ_NEW()) THEN RETURN, 0

; Get the list of selected items.
selItem = oTool -> GetSelectedItems()

; Call the UI service on the first item in the list
; of selected items.
RETURN, oTool -> DoUIService('Example Service', selItem[0])

END
Example: Changing a Property Value iTool Developer’s Guide

Chapter 12: Creating a User Interface Service 239
PRO opName__define

struct = {opName, $
inherits IDLitDataOperation $

}

END

Discussion

Only two methods are required: Init and DoExecuteUI. Since this operation is based
on the IDLitDataOperation class, all interaction with the iTools undo/redo system is
automated.

Even though all of the items that are currently selected in the iTool are retrieved by
the GetSelectedItems method, only the first item is passed to the SrvExample user
interface service for processing. Handling multiple selected items would require a
more complicated user interface.

The process of defining an IDLitDataOperation is discussed in detail in Chapter 7,
“Creating an Operation”.

Registering the SrvExample service

In order for the SrvExample user interface service to be available, it must be
registered with the current iTool. The following line in the iTool’s launch routine
allows the service to be called with the name “Example Service”:

ITREGISTER, 'Example Service', 'srvExample', /UI_SERVICE

Registering the opName operation

To use the opName operation within an iTool, the operation must be registered in the
iTool’s definition. The following statement registers the operation with the name
“Property Name” and places it in the Operations menu of the iTool.

self -> RegisterOperation, 'Property Name', 'opName', $
 IDENTIFIER = 'Operations/PropertyName'

Invoking the opName operation

To use the SrvExample service, the user would launch an iTool for which the opName
operation is registered, select an iTool component in the window, and select
Property Name from the Operations menu.
iTool Developer’s Guide Example: Changing a Property Value

240 Chapter 12: Creating a User Interface Service
Example: Changing a Property Value iTool Developer’s Guide

Chapter 13:

Creating a User
Interface Panel
This chapter describes the process of creating a user interface panel.
Overview . 242
Creating a UI Panel Interface 243
Creating Callback Routines 248

Registering a UI Panel 250
Example: A Simple UI Panel 252
iTool Developer’s Guide 241

242 Chapter 13: Creating a User Interface Panel
Overview

A UI Panel is a collection of user interface elements displayed in one or more tabs
located on the right, left, or bottom edge of an iTool window. The UI panel interface
makes it easy to attach a set of controls chosen by the iTool developer to the standard
iTool interface.

Note
In the initial iTools release, only one user interface style is supplied: the IDL widget
interface toolkit. As a result, UI panels consist of widgets from the IDL graphical
user interface toolkit, displayed in a tab widget. As the iTools framework continues
to grow, additional user interface styles may be created either by RSI or by third-
party developers.

Controls on a UI panel exchange information with the iTool itself via one or more
callback routines. These routines allow the iTool to modify the controls in the UI
panel as the user selects different visualization components or otherwise changes the
contents of the visualization.

Creating and Using a UI Panel

To add a UI panel to the iTool interface, you will do the following:

• Create an IDL procedure that creates the user interface elements that comprise
the panel. See “Creating a UI Panel Interface” on page 243 for details.

• Create an one or more event-handling routines to handle events generated by
the user interface elements in the panel. See “Creating a UI Panel Interface” on
page 243 for details.

• Create one or more callback routines to control the display of the items on the
panel as the contents of the iTool window change. See “Creating Callback
Routines” on page 248 for details.

• Create an iTool with the TYPES property set to the appropriate iTool type and
register the UI panel with the iTool that will display it. See “Registering a UI
Panel” on page 250 for details.w
Overview iTool Developer’s Guide

Chapter 13: Creating a User Interface Panel 243
Creating a UI Panel Interface

It is beyond the scope of this manual to provide general information on the creation of
user interfaces. For information on creating a user interface using the IDL widget
toolkit, see “Creating Graphical User Interfaces in IDL” in the Building IDL
Applications manual. Keep the following points in mind when creating IDL widget
interface code for iTool user interface panels.

Panel Creation Routines

A user interface panel creation routine is similar to the widget creation routine that
creates a standalone widget application, but with the following important differences:

Signature

The routine signature of a user interface panel looks like this:

PRO PanelName, wPanel, oUI

where PanelName is the name of the routine, wPanel is an input argument that
contains the widget ID of the panel widget associated with this panel, and oUI is an
input argument that contains an object reference to the IDLitUI object associated with
the iTool that includes the user interface panel.

Event Loop and Widget Management

Standalone widget applications must arrange for the management of their widgets
and the creation of an event loop; these details are usually handled by the
XMANAGER or WIDGET_EVENT routines. A user interface panel does not need to
call XMANAGER or WIDGET_EVENT; widget management is handled by the main
iTool interface code. A user interface panel simply attaches itself to the bulk of the
iTool interface.

About the Panel Widget

In the initial release of the iTools, user interface panels are contained in an IDL tab
widget displayed on the right side of the iTool window. We will refer to this tab
widget as the panel widget in this documentation, since all user interface elements in
a UI panel are contained in this widget.

The panel widget itself is created automatically when a user interface panel is
registered with an iTool, and its widget ID is passed to the panel creation routine
along with a reference to the iTool user interface object.
iTool Developer’s Guide Creating a UI Panel Interface

244 Chapter 13: Creating a User Interface Panel
Use the widget ID of the panel widget to set the title of the tab that appears at the top
of the panel. For example the following lines might occur at the beginning of a
routine that builds a user interface panel:

PRO ExamplePanel, wPanel, oUI

; Set the title used on the panel's tab.
WIDGET_CONTROL, wPanel, BASE_SET_TITLE='Example Panel'

... more panel code.

The wPanel argument contains the widget ID of the panel widget, which was
assigned when the iTool interface was built. The oUI argument contains an object
reference to the IDLitUI object associated with the current iTool. The call to the
WIDGET_CONTROL procedure sets the title of the tab to be “Example Panel.”

You may also find it useful to specify a single event-handling routine for all events
generated by the panel widget. You can specify the name of this routine with a
statement similar to the following:

WIDGET_CONTROL, wPanel, EVENT_PRO = 'ExamplePanel_event'

where ExamplePanel_event is replaced by the name of the event-handling routine
you create for your panel. Of course, you can also specify event-handling routines for
specific widgets within the panel using the EVENT_PRO and EVENT_FUNC
keywords to the widget creation routines.

Registering the Panel with the User Interface Object

To ensure that notifications from the iTool itself are passed to the user interface panel
as needed, the panel creation routine must register the panel widget with the iTool
user interface object. This registration step allows you to specify the name of the
callback routine that will be called when a notification is generated by the iTool itself.

To register a user interface panel, use the RegisterWidget method of the IDLitUI
object:

id = oUI -> RegisterWidget(wPanel, 'Panel', 'Ex_callback')

where oUI is an object reference to the IDLitUI object and wPanel is the widget ID
of the panel widget; both are passed in as arguments to the panel creation routine. The
second argument to the RegisterWidget method ('Panel', in this example) is the
human-readable name of the UI panel. The third argument ('Ex_callback', in this
example) is the name of the panel’s callback routine. See “IDLitUI::RegisterWidget”
in the IDL Reference Guide manual for details. Callback routines are discussed in
detail in “Creating Callback Routines” on page 248.
Creating a UI Panel Interface iTool Developer’s Guide

Chapter 13: Creating a User Interface Panel 245
Adding Observers

For notification messages to be passed to the correct callback routine, an
OnNotifyObserver must be established by calling the AddOnNotifyObserver method
of the IDLitUI object. The AddOnNotifyObserver method takes as its arguments the
ID created by the call to the RegisterWidget method (as discussed in the previous
section) and the component object identifier of the iTool component to observe. Once
the observer is created, each time the specified iTool component generates a message
(that is, when the component itself calls the DoOnNotify method), the registered
widget callback routine is called with the message as one of its arguments. The call to
the AddOnNotifyObserver method looks like:

oUI -> AddOnNotifyObserver, id, Component

where id is an identifier created by a call to the RegisterWidget method, and
Component is the component object identifier of the iTool component being
observed. See “IDLitUI::AddOnNotifyObserver” in the IDL Reference Guide manual
for additional details.

The component argument to the AddOnNotifyObserver method can be any string
value. For example, any time the selection within an iTool window changes, the
DoOnNotify method is called with its first parameter (idOriginator) set to the string
value 'Visualization' rather than to the object identifier of a component. An
observer whose Component argument is set to the string 'Visualization' will be
notified each time the selection changes in the iTool window. For example, the
following statement specifies that the panel widget (as registered via the
RegisterWidget method) will receive notifications whenever a visualization changes
in the iTool window.

oUI -> AddOnNotifyObserver, id, 'Visualization'

Here, id is the identifier created in the previous section. The second argument
('Visualization') specifies that messages will be generated whenever a
visualization is modified.

“Example: A Simple UI Panel” on page 252 provides examples of observers of both
types. See “iTool Messaging System” on page 25 for background information on
observers and messages.
iTool Developer’s Guide Creating a UI Panel Interface

246 Chapter 13: Creating a User Interface Panel
Create the Widget Hierarchy

The widget hierarchy of a user interface panel looks like the following:

Panel widget
|
- Base widget

|
- other widgets

Since the widget ID of the panel widget is supplied as an argument to the panel
creation routine, all that is left is to create a base widget with the panel widget as its
parent, and to populate the base widgets with other widgets as necessary.

Passing State Information

State information can be passed between widget creation routines and widget event
handling routines in several different ways. The method used most often in iTool user
interface panels is to create a state structure in the panel creation routine, store the
appropriate values in this structure, and assign the structure to the widget user value
of one of the widgets in the panel widget hierarchy. For a more detailed discussion of
this technique, see “Managing Application State” in Chapter 26 of the Building IDL
Applications manual.

In addition to widget IDs and other state information from your widget interface, you
may find it useful to store object references to the iTool object and to the IDLitUI
object associated with the iTool object in the state structure. Having these object
references available in your event handler and callback routines allows you to take
advantage of methods available in the iTool and user interface objects.

Create Event Handlers

Like other widget applications, iTool user interface panels use one or more event
handling routines to perform actions based on the user’s interaction with the widgets
in the interface. As with generalized widget applications, you can write event
handling routines for a user interface panel in numerous ways; see “Widget Event
Processing” in Chapter 26 of the Building IDL Applications manual for an in-depth
discussion of widget event handling in general.

The following suggestions apply specifically to event handlers for iTool user interface
panels:
Creating a UI Panel Interface iTool Developer’s Guide

Chapter 13: Creating a User Interface Panel 247
Use the GetSelectedItems Method

Often, you will want to apply an operation to one or more items in the iTool window
when the user selects an element on the user interface panel. Use the
GetSelectedItems method of the iTool object to retrieve references to the iTool
component objects that are selected.

The following statement retrieves an array of object references to all of the currently
selected items in the iTool:

oTargets = state.oTool -> GetSelectedItems(COUNT = nTarg)

Note
Note that this example assumes that a reference to the iTool object is stored in the
oTool field of the state structure variable. The COUNT keyword to the
GetSelectedItems method returns the number of items selected.

Use the DoAction Method

In many cases, the user’s interaction with the user interface panel will instruct the
iTool to apply an iTool operation to the selected item. Where possible, use the
DoAction method of the operation to perform this task. Calling the DoAction method
ensures that the changes caused by the operation are properly inserted into the iTool
undo/redo system.

For example, the following statement:

success = state.oUI -> DoAction('Operations/Rotate/RotateLeft')

calls the DoAction method on the IDLitUI object associated with the current iTool,
invoking the operation registered with the system with the operation identifier
'Operations/Rotate/RotateLeft'.

Redraw the iTool Window

Call the RefreshCurrentWindow method of the iTool object to force the iTool’s
window to update, displaying any changes that took place as the result of the
operations executed in your event handling routine:

state.oTool -> RefreshCurrentWindow

Note
Note that this example assumes that a reference to the iTool object is stored in the
oTool field of the state structure variable.
iTool Developer’s Guide Creating a UI Panel Interface

248 Chapter 13: Creating a User Interface Panel
Creating Callback Routines

User interface panel callback routines are executed when an iTool component for
which the panel has created an observer generates a notification message. The
callback routine then uses the value of the notification message to determine what
action to take. Observers are created as described in “Adding Observers” on
page 245.

Callback Routine Signature

A user interface panel widget callback routine has the following signature:

PRO PanelName_callback, wPanel, IdOriginator, IdMessage, Value

where:

• PanelName_callback is the name of the callback routine,

• wPanel is the widget ID of the panel widget (see “About the Panel Widget” on
page 243),

• IdOriginator is a string identifying the source of the message (usually the
object identifier of an iTool component object, but it can be any string value),

• IdMessage is a string that uniquely identifies the message being sent, and

• Value is a value that is associated with the message being sent.

See “iTool Messaging System” on page 25 for more information on the IdMessage
and Value arguments.

Registration of Callback Routines

Callback routines are registered along with the user interface panel itself, in the call
to the RegisterWidget method of the IDLitUI object. See “Registering the Panel with
the User Interface Object” on page 244 for details.

Retrieving Widget State Information

The wPanel argument to the callback routine contains the widget ID of the panel
widget. This widget ID provides a way for the callback routine to retrieve state
information about the widgets that make up the panel.
Creating Callback Routines iTool Developer’s Guide

Chapter 13: Creating a User Interface Panel 249
For example, if you have saved a state structure containing widget information in the
user value of the first child widget of the panel widget, code similar to the following
would allow you to retrieve that state structure:

; Make sure we have a valid widget ID.
IF ~ WIDGET_INFO(wPanel, /VALID) THEN RETURN

; Retrieve the widget ID of the first child widget of
; the UI panel.
wChild = WIDGET_INFO(wPanel, /CHILD)

; Retrieve the state structure from the user value of
; the first child widget.
WIDGET_CONTROL, wChild, GET_UVALUE = state

This technique is used in the example user interface panel described in “Example: A
Simple UI Panel” on page 252.
iTool Developer’s Guide Creating Callback Routines

250 Chapter 13: Creating a User Interface Panel
Registering a UI Panel

User interface panels are registered with the iTool system using the ITREGISTER
procedure. Once a UI panel has been registered, it will be displayed for any iTool
whose TYPE property matches the string specified via the TYPES keyword when
registering the panel. Similarly, if an iTool displays a visualization whose TYPE
property matches the string specified via the TYPES keyword when registering the
panel, the panel will be displayed for that iTool.

Registering the Panel in the iTool Launch Routine

In most cases, you will register your user interface panel in an iTool’s launch routine,
with a statement like:

ITREGISTER, panelName, panelCode, TYPES = panelType, /UI_PANEL

where panelName is a string containing the human-readable name of your user
interface panel, panelCode is a string containing the name of the IDL procedure that
creates the user interface panel, and panelType is a string that identifies the type of
iTool or visualization for which the panel should be displayed. The UI_PANEL
keyword must be present in order to register a user interface panel using the
ITREGISTER procedure.

See “ITREGISTER” in the IDL Reference Guide manual for additional details.

About the TYPE property

To display a user interface panel for a given iTool, you will not only need to register
the panel in that iTool’s launch routine, but also specify a matching type when
initializing the iTool itself. The iTool system will display a registered panel in an
iTool whose TYPE property contains a string that matches the string specified via the
TYPES keyword when registering the panel.

To set the TYPE property of an iTool use a statement like this in the iTool’s Init
method:

self -> IDLitToolbase::Init(_EXTRA = _extra, TYPE = panelType)

where panelType is a string that matches the string used as the value of the TYPES
keyword to ITREGISTER.

Similarly, the iTool system will display a registered panel when an iTool displays a
visualization whose TYPE property contains a string that matches the string specified
via the TYPES keyword when registering the panel.
Registering a UI Panel iTool Developer’s Guide

Chapter 13: Creating a User Interface Panel 251
To set the TYPE property of a visualization, use a statement like this in the
visualization’s Init method:

self -> IDLitVisualization::Init(_EXTRA = _extra, TYPE = panelType)

where panelType is a string that matches the string used as the value of the TYPES
keyword to ITREGISTER.

Changing the Panel Location

You can control which side of the iTool the user interface panel is displayed on by
specifying the PANEL_LOCATION keyword to the IDLITSYS_CREATETOOL
function. The keyword can be set to any of the following values;

• 0 = position the panel above the iTool window

• 1 = position the panel below the iTool window

• 2 = position the panel to the left of the iTool window.

• 3 = position the panel to the right of the iTool window (this is the default).

Note
If your iTool creation routine uses the keyword inheritance mechanism, and the
_EXTRA keyword is included in the creation routine’s call to
IDLITSYS_CREATETOOL, then the user will be able to specify the
PANEL_LOCATION keyword when launching the iTool from the IDL command
line.
iTool Developer’s Guide Registering a UI Panel

252 Chapter 13: Creating a User Interface Panel
Example: A Simple UI Panel

The following example creates a simple user interface panel consisting of two
buttons: Rotate and Hide/Show. The Rotate button rotates the selected iTool
component 90 degrees, if possible. The Hide/Show button toggles the value of the
HIDE property of the selected object.

Note
This example is intended to demonstrate the concepts involved in creating a user
interface panel. For examples of more useful panels, see the files
idlitimgmenu.pro and idlitvolmenu.pro, which create the user interface
panels for the IIMAGE and IVOLUME iTools, respectively. Both files are located
in the lib/itools/ui_widgets subdirectory of the IDL installation directory.

To display a user interface panel named ExamplePanel, this example creates the
following items:

• Panel Creation Routine

• Panel Event Handler Routine

• Panel Callback Routine

• Panel Type Specification

Panel Creation Routine

The user interface panel creation routine does the work of displaying the IDL widgets
that make up the UI panel display.

Figure 13-1: The example panel.
Example: A Simple UI Panel iTool Developer’s Guide

Chapter 13: Creating a User Interface Panel 253
PRO ExamplePanel, wPanel, oUI

; Set the title used on the panel's tab.
WIDGET_CONTROL, wPanel, BASE_SET_TITLE = 'Example Panel'

; Specify the event handler
WIDGET_CONTROL, wPanel, EVENT_PRO = "ExamplePanel_event"

; Register the panel with the user interface object.
strObserverIdentifier = oUI -> RegisterWidget(wPanel, "Panel", $

'ExamplePanel_callback')
; Register to receive selection events on visualizations.
oUI -> AddOnNotifyObserver, strObserverIdentifier, $

'Visualization'

; Retrieve a reference to the current iTool.
oTool = oUI -> GetTool()

; Create a base widget to hold the contents of the panel.
wBase = WIDGET_BASE(wPanel, /COLUMN, SPACE = 5, /ALIGN_LEFT)

; Create panel contents.
wLabel = WIDGET_LABEL(wBase, VALUE = "Choose an Action:", $

/ALIGN_LEFT)

; Get the Operation ID of the rotate operation. If the operation
; exists, create the "Rotate Item" button and monitor whether
; the operation is available for the selected item.
opID = 'Operations/Operations/Rotate/RotateLeft'
oRotate = oTool -> GetByIdentifier(opID)

IF (OBJ_VALID(oRotate)) THEN BEGIN
idRotate = oRotate -> GetFullIdentifier()
wRotate = WIDGET_BUTTON(wBase, VALUE = "Rotate Item", $

UVALUE="ROTATE")
; Monitor for availablity of the Rotate operation.
oUI -> AddOnNotifyObserver, strObserverIdentifier, idRotate

ENDIF ELSE $
idRotate = 0

wHide = WIDGET_BUTTON(wBase, VALUE = "Show/Hide Item", $
UVALUE = "HIDE")

; Pack up the state structure and store in first child.
state = {oTool:oTool, $

oUI:oUI, $
idRotate : idRotate, $
wPanel:wPanel, $
wBase:wBase, $
iTool Developer’s Guide Example: A Simple UI Panel

254 Chapter 13: Creating a User Interface Panel
wRotate:wRotate, $
wHide:wHide $

}
wChild = WIDGET_INFO(wPanel, /CHILD)

IF wChild NE 0 THEN $
WIDGET_CONTROL, wChild, SET_UVALUE = state, /NO_COPY

END

Discussion

It is beyond the scope of this chapter to describe the IDL widget concepts employed
in the ExamplePanel example; the comments in the code that creates the user
interface panel describe most of the features. The following points are worth noting,
however:

• The panel creation routine accepts two arguments: the widget ID of the panel
widget (stored in the variable wPanel, in this example), and an object
reference to the IDLitUI object associated with the iTool (stored in the variable
oUI).

• The example uses the EVENT_PRO keyword to the WIDGET_CONTROL
procedure to establish an event-handling routine, ExamplePanel_event.
This event-handling routine is described in “Panel Event Handler Routine” on
page 255.

• The example registers a single callback routine, ExamplePanel_callback,
using the RegisterWidget method of the IDLitUI class. The callback routine is
described in “Panel Callback Routine” on page 256.

• The example adds an OnNotifyObserver for the for the Visualization
component described in “Adding Observers” on page 245.

• The example uses the GetTool method of the IDLitUI object to retrieve an
object reference to the iTool with which the panel is associated. This reference
is later used to retrieve a reference to the IDLitOperation object that performs
the Rotate Left operation, placing it in the variable oRotate.

• If the Rotate Left operation is available to the iTool, the example places the
Rotate button on the user interface panel. It also establishes an observer to
watch for changes in the availability of the Rotate Left operation, which
will change based on the item selected. The callback routine will uses the
messages received by this observer to sensitize and desensitize the Rotate
button as necessary.
Example: A Simple UI Panel iTool Developer’s Guide

Chapter 13: Creating a User Interface Panel 255
• The example packages important information in a state structure, and assigns
this structure to the user value of the first child widget of the panel widget. The
event-handling and callback routines will retrieve this state structure and use
the information contained therein.

Panel Event Handler Routine

The event-handler routine receives widget events generated by the widgets that make
up the user interface panel, and acts accordingly.

PRO ExamplePanel_event, event

; Retrieve the widget ID of the first child widget of
; the UI panel.
wChild = WIDGET_INFO(event.handler, /CHILD)

; Retrieve the state structure from the user value of
; the first child widget.
WIDGET_CONTROL, wChild, GET_UVALUE = state

; Retrieve the user value of the widget that generated
; the event.
WIDGET_CONTROL, event.id, GET_UVALUE = uvalue

;; Now do the work for each panel item.
SWITCH STRUPCASE(uvalue) OF

'ROTATE': BEGIN
; Apply the Rotate Left operation to the selected item.
success = state.oUI -> DoAction(state.idRotate)
RETURN

END
'HIDE': BEGIN

; Hide the selected item.
;
oTargets = state.oTool -> GetSelectedItems(count = nTarg)
IF nTarg GT 0 THEN BEGIN

; If there are selected items, use only the last
; selection.
oTarget = oTargets[0]
; Get the iTool identifier of the selected item.
name = oTarget -> GetFullIdentifier()
; Retrive the setting of the HIDE property.
oTarget -> GetProperty, HIDE = hide
; Change the value of the HIDE property from 0 to 1
; or from 1 to 0. Use the DoSetProperty and
; CommitActions method to ensure that the change
; is entered into the undo/redo transaction buffer.
void = state.oTool -> DoSetProperty(name, "HIDE", $
iTool Developer’s Guide Example: A Simple UI Panel

256 Chapter 13: Creating a User Interface Panel
((hide+1) MOD 2))
state.oTool -> CommitActions

ENDIF
BREAK

END
ELSE:

ENDSWITCH

; Refresh the iTool window.
state.oTool -> RefreshCurrentWindow

END

Discussion

It is beyond the scope of this chapter to describe the IDL widget concepts employed
in the ExamplePanel event handler; the comments in the code describe most of the
features. The following points are worth noting, however:

• If the event received by the event handler routine is generated by the Rotate
button, the example calls the DoAction method of the IDLitUI object, with the
identifier of the Rotate Left operation as its argument.

• If the event received by the event handler routine is generated by the
Hide/Show button, the example does the following:

• Use the reference to the iTool object stored in the state structure to retrieve
the list of selected items using the GetSelectedItems method.

• Retrieve the object identifier of the last item selected.

• Retrieve the value of the HIDE property of the selected item.

• Use the DoSetProperty method of the IDLitTool object to toggle the value
of the HIDE property for the selected item.

• Commit the property change in the undo/redo transaction buffer using the
CommitActions method of the IDLitTool object.

• After the iTool display has been changed, call the RefreshCurrentWindow
method of the IDLitTool object to redraw the iTool window.

Panel Callback Routine

The user interface panel callback routine is called whenever a component for which
an OnNotifyObserver has been registered generates a message. It parses the message
received and takes action as necessary.
Example: A Simple UI Panel iTool Developer’s Guide

Chapter 13: Creating a User Interface Panel 257
PRO ExamplePanel_callback, wPanel, strID, messageIn, component

; Make sure we have a valid widget ID.
IF ~ WIDGET_INFO(wPanel, /VALID) THEN RETURN

; Retrieve the widget ID of the first child widget of
; the UI panel.
wChild = WIDGET_INFO(wPanel, /CHILD)

; Retrieve the state structure from the user value of
; the first child widget.
WIDGET_CONTROL, wChild, GET_UVALUE = state

; Process as necessary, depending on the message received.
SWITCH STRUPCASE(messageIn) OF

; This section handles messages generated when the rotate
; operation becomes available or unavailable, and sensitizes
; or desensitizes the "Rotate" button accordingly.
'SENSITIVE':
'UNSENSITIVE': BEGIN

WIDGET_CONTROL, state.wRotate, $
SENSITIVE = (messageIn EQ 'SENSITIVE')

BREAK
END

; This section handles messages generated when the
; item selected in the iTool window changes and changes
; the sensitivity of the "Hide/Show" button accordingly.
'SELECTIONCHANGED': BEGIN

; Retrieve the item that was selected last.
oSel = state.oTool -> GetSelectedItems()
oSel = oSel[0]
; If the last item selected is not a visualization,
; desensitize the "Hide/Show" button.
IF (~OBJ_ISA(oSel, 'IDLITVISUALIZATION')) THEN $

WIDGET_CONTROL, state.wHide, SENSITIVE = 0 $
ELSE BEGIN
; If the selected object is a visualization, sensitize
; the "Hide/Show" button.

WIDGET_CONTROL, state.wHide, SENSITIVE = 1
ENDELSE
BREAK

END
ELSE:

ENDSWITCH

END
iTool Developer’s Guide Example: A Simple UI Panel

258 Chapter 13: Creating a User Interface Panel
Discussion

The example panel’s callback routine performs the following tasks:

• Uses the widget ID provided in the wPanel argument to retrieve the widget
state structure stored in the first child widget of the panel widget.

• If the value of the messageIn argument is either SENSITIVE or
UNSENSITIVE, change the sensitivity of the Rotate button (stored in the
wRotate field of the widget state structure) as necessary.

• If the value of the messageIn argument is SELECTIONCHANGED, perform the
following tasks:

• Use the reference to the iTool object stored in the oTool field of the state
structure to retrieve an object reference to the last selected component.

• If the selected component is not a visualization, desensitize the
Hide/Show button.

• If the selected component is a visualization, sensitize the Hide/Show
button.

Panel Type Specification

In order to display the ExamplePanel user interface panel along with an iTool, the
following two things must happen:

1. The UI panel must be registered, using the ITREGISTER procedure.

2. A tool with the appropriate TYPE must be created.

For the purposes of this example, suppose we have an iTool named myTool, with a
launch routine named myTool.pro, and an iTool object definition routine named
myTool__define.pro.

In the myTool.pro file, we included the following statement:

ITREGISTER, 'Example Panel', 'ExamplePanel', TYPE = 'EXAMPLE', $
/UI_PANEL

In the myTool__define.pro file, we include the string EXAMPLE in the TYPE
property specified in the Init method:

FUNCTION myTool::Init, _REF_EXTRA = _EXTRA

IF (self -> IDLitToolbase::Init(_EXTRA = _extra, $
TYPE = 'EXAMPLE') EQ 0) $

THEN RETURN, 0
Example: A Simple UI Panel iTool Developer’s Guide

Chapter 13: Creating a User Interface Panel 259
Calling the launch routine myTool at the IDL Command Line creates a new iTool and
displays the ExamplePanel panel on the right side of the iTool window.
iTool Developer’s Guide Example: A Simple UI Panel

260 Chapter 13: Creating a User Interface Panel
Example: A Simple UI Panel iTool Developer’s Guide

Index

Symbols
_EXTRA keyword, 81

A
Add method, 61
AddByIdentifier method, 33
adding data, 33
AddOnNotifyObserver method, 27, 213, 245
AGGREGATE keyword, 61
Aggregate method, 61
aggregation of properties, 50, 61
architecture of iTools, 17
attributes, 50
automatic data type matching, 43

B
base class

file reader, 168
file writer, 192
iTool, 70
operation, 128, 141
visualization, 97

bitmap location, 28
boolean properties, 51
BOOLEAN property data type, 51

C
callback routines

creating, 248
for user interface, panel, 242
observers, 245
iTool Developer’s Guide 261

262
callback routines (continued)
registering, 248

Cleanup method
data operation, 130
file reader, 170
file writer, 194
generalized operation, 142
visualization, 102

color properties, 51
COLOR property data type, 51
command line arguments, 80
component framework See framework
component registration, 22
components, 75
container

data, 36, 37
parameter, 37

creating
file readers, 162, 166
file writers, 186
iTools, 67
operations, 120
user interface services, 226
visualization types, 90, 95

D
data

container, 36
management, 31
manager

adding data, 33
described, 33
removing data, 33

objects
described, 36
IDLitDataIDLArray2D, 38
IDLitDataIDLArray3D, 38
IDLitDataIDLImage, 39
IDLitDataIDLImagePixels, 39
IDLitDataIDLPalette, 39
IDLitDataIDLPolyvertex, 39

data (continued)
objects

IDLitDataIDLVector, 40
removing, 33
types

IDLARRAY2D, 35
IDLARRAY3D, 35
IDLIMAGE, 35
IDLIMAGEPIXELS, 35
IDLOPACITY_TABLE, 35
IDLPALETTE, 35
IDLPOLYVERTEX, 35
IDLVECTOR, 35
IDLVERTEX, 35
iTool, 32
matching, 43
parameter, 32, 41
property, 49
property See property data types

update mechanism, 45
data-centric operations, 125
DESCRIPTION property attribute, 59
DoAction method

generalized operation, 143
user interface element, 213

documented classes, 11
DoExecuteUI method, 132

E
enumerated list properties, 53
ENUMLIST

property attribute, 59
property data type, 53

error handling, 82
ErrorMessage method, 221
examples

data operation, 156
file reader, 179
file writer, 203
simple iTool, 85
simple user interface panel, 252
Index iTool Developer’s Guide

263
examples (continued)
user interface service, 234
visualization type, 113

Execute method
data operation, 131
described, 123

EXPENSIVE_OPERATION property, 123,
153

F
file readers

creating, 162, 166
described, 162
example, 179
IDLitReadASCII, 163
IDLitReadBinary, 163
IDLitReadBMP, 163
IDLitReadDICOM, 163
IDLitReadISV, 164
IDLitReadJPEG, 164
IDLitReadPICT, 164
IDLitReadPNG, 164
IDLitReadTIFF, 164
IDLitReadWAV, 165
predefined, 163
preferences, 64
registering, 72, 177
standard base class, 168
unregistering, 178

file writers
creating, 186
described, 186
example, 203
IDLitWriteASCII, 187
IDLitWriteBinary, 187
IDLitWriteBMP, 187
IDLitWriteISV, 188
IDLitWriteJPEG, 188
IDLitWritePICT, 188
IDLitWritePNG, 188
IDLitWriteTiff, 189

file writers (continued)
predefined, 187
preferences, 64
registering, 72, 201
standard base class, 192
unregistering, 202

FLOAT property data type, 51
floating-point integer properties, 51
framework

advantages, 9
architecture, 17
code base, 11
documented vs. undocumented classes, 11
overview
skills required to use, 13

G
GetData method to file reader, 174
GetProperty method

and property identifiers, 57
data operation, 133
file reader, 171
file writer, 195
generalized operation, 147
visualization, 103

GetTool method, 212

H
help, 29
HIDE property attribute, 59
hierarchy, 21

I
icon (bitmap) location, 28
ICON property, 154, 201
IDENTIFIER

keyword, 80
property, 154
iTool Developer’s Guide Index

264
identifiers
property, 50, 57
strings See object identifiers

IDL widgets, 18, 210, 246
IDLARRAY2D data type, 35
IDLARRAY3D data type, 35
IDLgr* graphics objects, 99
IDLIMAGE data type, 35
IDLIMAGEPIXELS data type, 35
IDLit* visualization objects, 99
IDLitData object, 36
IDLitData objects, 33
IDLitDataContainer object, 36
IDLitDataContainer objects, 33
IDLitDataIDLArray2D data object, 38
IDLitDataIDLArray3D data object, 38
IDLitDataIDLImage data object, 39
IDLitDataIDLImagePixels data object, 39
IDLitDataIDLPalette data object, 39
IDLitDataIDLPolyvertex data object, 39
IDLitDataIDLVector data object, 40
IDLitDataOperation class, 128, 136
IDLitDataOperation object, 125
IDLitIMessaging class, 216
IDLitIMessaging object, 25
IDLitOpBytscl operation, 122
IDLitOpConvolution operation, 122
IDLitOpCurvefitting operation, 122
IDLitOperation class, 141, 152
IDLitOpSmooth operation, 122
IDLitParameterSet object, 37, 81
IDLitParameterSet objects, 33
IDLitReadASCII file reader, 163
IDLitReadBinary file reader, 163
IDLitReadBMP file reader, 163
IDLitReadDICOM file reader, 163
IDLitReader class, 168
IDLitReadISV file reader, 164
IDLitReadJPEG file reader, 164
IDLitReadPICT file reader, 164
IDLitReadPNG file reader, 164

IDLitReadTIFF file reader, 164
IDLitReadWAV file reader, 165
IDLITSYS_CREATETOOL function, 83
IDLitToolbase class, 70, 75
IDLitUI class, 212
IDLitUIHourGlass user interface service, 225
IDLitVisAxis visualization type, 91
IDLitVisColorbar visualization type, 91
IDLitVisContour visualization type, 91
IDLitVisHistogram visualization type, 91
IDLitVisImage visualization type, 91
IDLitVisIsosurface visualization type, 92
IDLitVisLegend visualization type, 92
IDLitVisLight visualization type, 92
IDLitVisPlot visualization type, 92
IDLitVisPlot3D visualization type, 92
IDLitVisPolygon visualization type, 93
IDLitVisPolyline visualization type, 93
IDLitVisRoi visualization type, 93
IDLitVisSurface visualization type, 93
IDLitVisText visualization type, 93
IDLitVisualization class, 97, 108
IDLitVisVolume visualization type, 94
IDLitWriteASCII file writer, 187
IDLitWriteBinary file writer, 187
IDLitWriteBMP file writer, 187
IDLitWriteISV file writer, 188
IDLitWriteJPEG file writer, 188
IDLitWritePICT file writer, 188
IDLitWritePNG file writer, 188
IDLitWriter class, 192, 199
IDLitWriteTIFF file writer, 189
IDLOPACITY_TABLE data type, 35
IDLPALETTE data type, 35
IDLPOLYVERTEX data type, 35
IDLVECTOR data type, 35
IDLVERTEX data type, 35
informational messages, 221
Init method

data operation, 126
file reader, 166
Index iTool Developer’s Guide

265
Init method (continued)
file writer, 190
generalized operation, 139
iTool, 69
visualization, 95

INITIAL_DATA keyword, 81
initializing superclasses, 69, 96, 127, 140, 167,

191
integer properties, 51
INTEGER property data type, 51
Intelligent Tool See iTool
intersection of aggregated properties, 61
IsA method to file reader, 173
iTool

class, registering, 78
command line arguments, 80
component framework See framework
creating, 67
data object classes, predefined, 38
data types

composite, 34
described, 32, 34
used by standard iTools, 34

described
error handling in launch routine, 82
help system, 29
Init method, 69
instantiating, 83
keyword arguments, 80
launch routine, 80
object class definition file, 69
object classes

documented, 11
reference documentation, 10
undocumented, 11

object hierarchy, 21
simple example, 85
standard base class, 70
system object, 21
system preferences, 64
user interface architecture, 210

iTool (continued)
user interface object, 212

ITREGISTER, 78, 231

K
keyword arguments, 80

L
linestyle properties, 52
LINESTYLE property data type, 52
location of bitmap resources, 28

M
messages

contents, 26
informational, 221
observers, 27
standard, 26
status, 217

messaging system, 18, 25

N
NAME property attribute, 59
names, parameter, 41
notification

described, 25
message contents, 26
messages, 18
observers, 27
sending, 25
standard messages, 26
system, 25

O
object descriptors, 20
object identifiers

defined, 19
described, 18
iTool Developer’s Guide Index

266
object identifiers (continued)
proxy, 20

object-oriented programming, 68
observers, 27, 245
OnDataChangeUpdate method, 45, 105
OnDataDisconnect method, 107
operations

creating, 120
data-centric, 125
described, 120
example, 156
IDLitOpBytscl, 122
IDLitOpConvolution, 122
IDLitOpCurvefitting, 122
IDLitOpSmooth, 122
pre-defined, 122
registering, 72
standard base class, 128, 141
undo/redo, 123
unregistering, 155

P
panel widget, 243
PANEL_LOCATION keyword, 251
parameters

data types, 32, 41
defined, 41
names, 41
registered, 41
registering, 97

preferences, 48
file readers, 64
file writers, 64
iTool system, 64
system, 64
visualization, 64

pre-registered properties, 55
presentation layer, 18
ProbeStatusMessage method, 217
prompts, 219
PromptUserText method, 220

PromptUserYesNo method, 219
properties

aggregation, 50, 61, 98
attributes, 50, 99

defined, 58
DESCRIPTION, 59
ENUMLIST, 59
HIDE, 59
NAME, 59
PROPERTY_IDENTIFIER, 59
SENSITIVE, 59
TYPE, 59
UNDEFINED, 59
USERDEF, 60
VALID_RANGE, 60

data types, 49
BOOLEAN, 51
COLOR, 51
ENUMLIST, 53
FLOAT, 51
INTEGER, 51
LINESTYLE, 52
STRING, 51
SYMBOL, 52
THICKNESS, 53
USERDEF, 51

described, 48
identifiers, 50, 57
interface, 48
intersection of aggregated, 61
pre-registered, 55
registering, 54, 98
registration, 50
retrieving values, 49
setting values, 49
sheet, 48
union of aggregated, 61
update mechanism, 63

PROPERTY_IDENTIFIER property attribute,
59
Index iTool Developer’s Guide

267
proxy
identifiers, 20
registration, 23

R
RecordFinalValues method, 147
RecordInitialValues method, 146
RedoOperation method, 150
reference documentation for iTool classes, 10
REGISTER_PROPERTIES keyword, 55
registered parameter, 41
RegisterFileReader method, 177
RegisterFileWriter method, 201
registering

an iTool class, 78
callback routines, 248
file readers, 72, 177
file writers, 72, 201
operations, 72, 153
parameters, 97
properties, 54, 98
user interface, services, 231
user interface panels, 244, 250
visualizations, 71

RegisterOperation method, 153
RegisterParameter method, 41
RegisterProperty method, 54
RegisterUIService method, 212, 232
RegisterVisualization method, 110
RegisterWidget method, 213, 244
registration

ITREGISTER procedure, 22
methods, 22
properties, 50
proxy, 23
Register* methods, 22
visualization types, 110

RemoveByIdentifier method, 33
REVERSIBLE_OPERATION property, 123,

154

S
sending messages, 25
sending notifications, 25
SENSITIVE property attribute, 59
SetData method to file writer, 197
SetProperty method

and property identifiers, 57
data operation, 134
file reader, 172
file writer, 196
generalized operation, 148
visualization, 104

SetPropertyAttribute method, 58
SHOW_EXECUTION_UI property, 132, 154
status information, providing, 216
status messages, 217
StatusMessage method, 217
string properties, 51
STRING property data type, 51
superclass initialization, 69, 96, 127, 140, 167,

191
symbol properties, 52
SYMBOL property data type, 52
system object, 21
system preferences, 64

T
thickness properties, 53
THICKNESS property data type, 53
TYPE

property, 250
property attribute, 59

TYPES property, 154

U
UI panel See user interface panel
UI service See user interface service
UNDEFINED property attribute, 59
undo/redo system, 123
iTool Developer’s Guide Index

268
undocumented classes, 11
UndoExecute method, 135
UndoOperation method, 149
union of aggregated properties, 61
unregistering, 75

components, 75
file readers, 178
file writers, 202
generic component, 75
operation, 155
visualization types, 112

UnRegisterUIService method, 212
UnRegisterWidget method, 213
user defined properties, 51
user interface

architecture, 210
elements, 216
panel

creation routines, 243
described, 242
example, 252
registering, 244, 250
TYPE property, 250

services
creating, 224, 226
example, 234
executing, 233
function, 226
IDLitUIHourGlass, 225
predefined, 225
using, 224

user interface panels, callback routines, 242
user interface services, registering, 231
user interfaces, 18
USERDEF

property attribute, 60
property data type, 51

V
VALID_RANGE property attribute, 60
visualization types

creating, 95
defined, 90
example, 113
IDLitVisAxis, 91
IDLitVisColorbar, 91
IDLitVisContour, 91
IDLitVisHistogram, 91
IDLitVisImage, 91
IDLitVisIsosurface, 92
IDLitVisLegend, 92
IDLitVisLight, 92
IDLitVisPlot, 92
IDLitVisPlot3D, 92
IDLitVisPolygon, 93
IDLitVisPolyline, 93
IDLitVisRoi, 93
IDLitVisSurface, 93
IDLitVisText, 93
IDLitVisVolume, 94
predefined, 91
preferences, 64
registering, 71, 110
standard base class, 97
unregistering, 112

VISUALIZATION_TYPE keyword, 84

W
widgets, 210
Index iTool Developer’s Guide

	Online Manuals
	Online Guide
	IDL Documentation
	What's New in IDL 6.0
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	iTool User's Guide
	iTool Developer's Guide
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	External Development Guide
	Obsolete IDL Features
	Master Index of IDL Docs

	IDL DataMiner Documentation
	IDL Dataminer
	DataDirect Connect ODBC Reference (3.1.1 for IRIX)
	DataDirect Connect ODBC Reference (3.7 for other platforms)

	IDL Wavelet Documentation
	IDL Wavelet Toolkit

	ION Documentation
	Introduction to ION
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	Search Documentation

	Contents
	Overview
	What are iTools?
	What is the iTools Component Framework?
	Advantages of Using the Framework

	About this Manual
	What this Manual is Not

	About the iTools Code Base
	Documented vs. Undocumented Classes

	Skills Required to Use the iTools Component Framework

	Part I: Understanding the iTools Component Framework
	iTool System Architecture
	Overview
	iTool Object Identifiers
	Proxy Identifiers
	Object Descriptors

	iTool Object Hierarchy
	iTool System Object

	Registering Components
	Registration Methods

	iTool Messaging System
	Sending Notifications
	Notification Messages
	Observers

	System Resources
	Icon Bitmaps
	Help System

	Data Management
	Overview
	iTool Data Manager
	Adding Data to the Data Manager
	Removing Data from the Data Manager

	iTool Data Types
	Composite Data Types
	Data Types of iTool Components

	iTool Data Objects
	Data Objects
	Data Containers
	Parameter Sets

	Predefined iTool Data Classes
	Parameters
	Parameter Names
	Parameter Data Types
	Registering Parameters

	Data Type Matching
	Data Update Mechanism

	Property Management
	About the Properties Interface
	What is a Property?
	Properties vs. Preferences
	How are Properties Displayed?
	Setting and Retrieving Property Values
	Property Data Types
	Property Registration
	Property Identifiers
	Property Attributes
	Property Aggregation

	Property Data Types
	User Defined Property Types

	Registering Properties
	Registering a Property
	Pre-Registered Properties

	Property Identifiers
	Property Attributes
	Available Property Attributes

	Property Aggregation
	Working with Aggregated Properties

	Property Update Mechanism
	Properties of the iTools System

	Part II: Using the iTools Component Framework
	Creating an iTool
	Overview
	The iTool Creation Process

	Creating a New iTool Class
	Creating an Init Method
	Creating the Class Structure Definition

	Registering a New Tool Class
	Using ITREGISTER
	Example

	Creating an iTool Launch Routine
	Specifying Command-Line Arguments and Keywords
	Creating Data Objects
	Handling Errors
	Creating an iTool Instance

	Example: Simple iTool
	Class Definition File
	Launch Routine

	Creating a Visualization
	Overview
	The Visualization Type Creation Process

	Predefined iTool Visualization Classes
	Creating a New Visualization Type
	Creating an Init Method
	Creating a Cleanup Method
	Creating a GetProperty Method
	Creating a SetProperty Method
	Creating an OnDataChangeUpdate Method
	Creating an OnDataDisconnect Method
	Creating the Class Structure Definition

	Registering a Visualization Type
	Using IDLitTool::RegisterVisualization
	Specifying Useful Properties

	Unregistering a Visualization Type
	Example: Image-Contour Visualization
	Class Definition File

	Creating an Operation
	Overview
	The Operation Creation Process

	Predefined iTool Operations
	Operations and the Undo/Redo System
	Data-Centric Operations
	Generalized Operations

	Creating a New Data-Centric Operation
	How an IDLitDataOperation Works
	Creating an IDLitDataOperation
	Creating an Init Method
	Creating a Cleanup Method
	Creating an Execute Method
	Creating a DoExecuteUI Method
	Creating a GetProperty Method
	Creating a SetProperty Method
	Creating an UndoExecute Method
	Creating the Class Structure Definition

	Creating a New Generalized Operation
	How an IDLitOperation Works
	Creating an IDLitOperation
	Creating an Init Method
	Creating a Cleanup Method
	Creating a DoAction Method
	Creating a RecordInitialValues Method
	Creating a RecordFinalValues Method
	Creating a GetProperty Method
	Creating a SetProperty Method
	Creating an UndoOperation Method
	Creating a RedoOperation Method
	Creating the Class Structure Definition

	Registering an Operation
	Using IDLitTool::RegisterOperation
	Specifying Useful Properties

	Unregistering an Operation
	Example: Data Resample Operation
	Class Definition File

	Creating a File Reader
	Overview
	The File Reader Creation Process

	Predefined iTool File Readers
	Creating a New File Reader
	Creating an Init Method
	Creating a Cleanup Method
	Creating a GetProperty Method
	Creating a SetProperty Method
	Creating an IsA Method
	Creating a GetData Method
	Creating the Class Structure Definition

	Registering a File Reader
	Using IDLitTool::RegisterFileReader

	Unregistering a File Reader
	Example: TIFF File Reader
	Class Definition File

	Creating a File Writer
	Overview
	The File Writer Creation Process

	Predefined iTool File Writers
	Creating a New File Writer
	Creating an Init Method
	Creating a Cleanup Method
	Creating a GetProperty Method
	Creating a SetProperty Method
	Creating a SetData Method
	Creating the Class Structure Definition

	Registering a File Writer
	Using IDLitTool::RegisterFileWriter

	Unregistering a File Writer
	Example: TIFF File Writer
	Class Definition File

	Part III: Modifying the iTool User Interface
	iTool User Interface Architecture
	Overview
	User Interface Objects

	Using iTool User Interface Elements
	Overview
	Status Messages
	Prompts
	Informational Messages

	Creating a User Interface Service
	Overview
	Creating and Using a UI Service

	Predefined iTool UI Services
	Creating a New UI Service
	Creating the UI Service Routine
	Creating Supporting User Interface Elements

	Registering a UI Service
	Using ITREGISTER
	Example
	Using the RegisterUIService Method

	Executing a User Interface Service
	Example: Changing a Property Value
	Creating the SrvExample service
	Creating the SrvExample interface
	Creating an operation that calls the service
	Registering the SrvExample service
	Registering the opName operation
	Invoking the opName operation

	Creating a User Interface Panel
	Overview
	Creating and Using a UI Panel

	Creating a UI Panel Interface
	Panel Creation Routines
	About the Panel Widget
	Registering the Panel with the User Interface Object
	Adding Observers
	Create the Widget Hierarchy
	Create Event Handlers

	Creating Callback Routines
	Callback Routine Signature
	Registration of Callback Routines
	Retrieving Widget State Information

	Registering a UI Panel
	Registering the Panel in the iTool Launch Routine
	About the TYPE property
	Changing the Panel Location

	Example: A Simple UI Panel
	Panel Creation Routine
	Panel Event Handler Routine
	Panel Callback Routine
	Panel Type Specification

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

